
Full Length Article

An adaptive opposite slime mold feature selection algorithm for complex
optimization problems☆

Elsayed Badr a,b,c, Mostafa Abdullah Ibrahim b, Diaa Salama b,d, Mohammed ElAffendi e,
Abdelhamied A Ateya e,f,* , Mohamed Hammad e,g, Alaa Yassin a,b

a Faculty of Computers and Artificial Intelligence, Misr University for Science & Technology, Egypt
b Faculty of Computers and Artificial Intelligence, Benha University, Egypt
c The Egyptian School of Data Science (ESDS), Benha, Egypt
d Faculty of Computers and Information, Misr International University, Egypt
e EIAS Data Science Lab, College of Computer and Information Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
f Department of Electronics and Communications Engineering, Zagazig University, Zagazig 44519, Egypt
g Department of Information Technology, Faculty of Computers and Information, Menoufia University, Shibin El Kom, 32511, Egypt

A R T I C L E I N F O

Keywords:
Slime mold algorithm (SMA)
Optimization
Adaptive opposite SMA (AOSMA)
Enhanced SMA (ESMA)
Modified SMA (MSMA)

A B S T R A C T

The slime mould algorithm (SMA) has recently emerged as a soaring metaheuristic strategy to function opti
mization problems due to its solid exploration-exploitation balance that enables it to converge efficiently towards
high-quality solutions. In spite of its broader applications, however, there remain areas where the algorithm is
constrained in diversified exploration and the scope of its exploitation mechanisms. In bridging these loopholes,
this work introduces a new variant known as the adaptive opposition SMA (AOSMA). AOSMA involves an
adaptive opposition-based learning (OBL) method, which learns online how to add opposition-based solutions at
the iteration process to enhance exploration abilities and avoid premature convergence. The adaptive policy
enables the algorithm to escape local optima more effectively by occasionally generating alternative candidate
solutions. Additionally, for the sake of increased exploitation, AOSMA also incorporates a plan in which the
randomly selected search agent is progressively replaced with the current best-performing agent during position
updating. The replacement process increases the focus of the algorithm towards prospective regions of the search
space, and thus it converges more quickly towards the global optimum. The implemented AOSMA was
exhaustively validated with both qualitative and quantitative measures in terms of thirteen rigorously proven
benchmark test functions involving a variety of unimodal, multimodal, and composite landscapes to test its
optimization ability extensively. Comparative tests on a collection of state-of-the-art metaheuristic algorithms
confirmed that AOSMA consistently produces higher or highly comparable performances across a variety of
problem instances. The experimental results confirm the robustness, adaptability, and improved search ability of
the algorithm, highlighting its potential as an efficient optimization method for complex real-world problems.
With the efficient fusion of adaptive exploration and improved exploitation, AOSMA provides a vital contribution
to the field of research into swarm intelligence and metaheuristic optimization.

1. Introduction

Maximum utilization of resources is a basic requirement in numerous
scientific, engineering, and industrial applications. Because of the
increasing complexity of real-world problems and the scarcity of re
sources, optimization has become a necessity for ensuring the highest
performance, cost-effectiveness, and operating efficiency. Optimization

problems can be broadly categorized into deterministic and stochastic
approaches, depending upon the type of problem, each with its advan
tages and methodological strategies depending upon the problem
landscape [1]. Deterministic optimization methods, such as linear and
nonlinear programming, rely extensively on derivative information.
These methods work best when there is structured problem formulation
and the search space is smooth or linear. Deterministic approaches excel

☆ Peer review under the responsibility of The International Open Benchmark Council.
* Corresponding author.

E-mail address: aateya@psu.edu.sa (A.A. Ateya).

Contents lists available at ScienceDirect

BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: www.keaipublishing.com/en/journals/benchcouncil-

transactions-onbenchmarks-standards-and-evaluations/

https://doi.org/10.1016/j.tbench.2025.100250
Received 10 July 2025; Received in revised form 8 December 2025; Accepted 9 December 2025

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100250

Available online 13 December 2025
2772-4859/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

https://orcid.org/0000-0002-1610-9612
https://orcid.org/0000-0002-1610-9612
mailto:aateya@psu.edu.sa
www.sciencedirect.com/science/journal/27724859
http://www.keaipublishing.com/en/journals/benchcouncil-transactions-onbenchmarks-standards-and-evaluations/
http://www.keaipublishing.com/en/journals/benchcouncil-transactions-onbenchmarks-standards-and-evaluations/
https://doi.org/10.1016/j.tbench.2025.100250
https://doi.org/10.1016/j.tbench.2025.100250
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2025.100250&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

in linear or weakly nonlinear spaces but experience difficulties when
confronted with highly nonlinear, multi-modal, or discontinuous spaces.
In such challenging cases, their dependence on gradient information can
be a limiting aspect, conditioning them to get stuck in local optima or
not to converge at all [2].

Stochastic optimization techniques, by contrast, never employ direct
gradient information. This kind of algorithm forms the foundation for
metaheuristic optimization methods. Metaheuristics are designed to
provide rigorous, general-purpose solutions that can be applied to a
large class of complex problems without specific knowledge of the
mathematical form [3]. Their inherent advantages include simplicity,
flexibility, independence of gradients, and less reliance on initial
candidate solutions, traits that have driven their popularity and dra
matic rise over the past few years. Metaheuristic algorithms have proven
outstandingly successful in optimization problem-solving in numerous
applications, from engineering design and scheduling to machine
learning, hyperparameter tuning, and biomedical image analysis. They
are largely inspired by natural, physical, or social processes and thus
form a vast and growing taxonomy. Metaheuristic algorithms fall under
four broad classes: swarm intelligence-based, evolutionary-based,
physics-based, and human-inspired algorithms [4].

These nature-inspired metaheuristic algorithms possess specific

strengths as they emulate some adaptive and intelligent behavior from
nature, resulting in very efficient tools. An innovative nature-inspired
optimization algorithm is the slime mould algorithm (SMA), which is
based on the nature-inspired foraging behavior and dynamic oscillatory
movement exhibited by slime moulds (Physarum polycephalum) [5].
SMA has been demonstrated to possess a strong capability to handle
extremely complex, high-dimensional, and multi-modal optimization
problems. Due to its strong global search capability and excellent
resistance to local optima, SMA has been effectively applied to many
applications in machine learning, engineering design, feature selection,
and image processing [6].

Although it has an outstanding performance, SMA also faces some
disadvantages, particularly concerning its exploration and exploitation.
There were findings indicating that SMA often has acceptable explora
tion of the search space. However, its capacity for exploitation is still in
need of enhancement to achieve faster convergence and higher-quality
solutions. To address such limitations, numerous methods have been
proposed in recent years. As documented in the literature [5], the two
most significant improvement strategies that have emerged are hy
bridization, where SMA is combined with other metaheuristics to
leverage complementary strengths, and algorithmic refinement, which
involves modifying or improving SMA’s basic equations and mecha
nisms to improve performance.

A case in point is Chen et al. [7], which proposed the RCLSMAOA
algorithm, a hybrid metaheuristic that combined the SMA and arith
metic optimization algorithm (AOA). The hybridization approach
enhanced the convergence rate and solution accuracy, showing the po
tential of blended algorithmic solutions to counter weaknesses in indi
vidual approaches. Building on such advancements, this work proposes
an adaptive variant of SMA in the guise of the adaptive opposition SMA
(AOSMA). AOSMA employs an adaptive opposition-based learning
(OBL) process to adaptively determine when to inject opposition solu
tions, enhancing the ability of the algorithm to explore without
precipitating premature convergence. In addition, a novel exploitation
enhancement method is incorporated through automatically substitut
ing a randomly selected search agent with the best-performing agent at
the position update phase, focusing the search on promising regions.

The remainder of this paper has the following structure: Section 2
provides a comprehensive review of existing literature and recent ad
ditions to the SMA; Section 3 provides a detailed methodology and the
AOSMA model suggested; Section 4 provides experimental findings and
comparative analyses; and finally, Section 5 summarizes the research
with conclusions and future study directions.

2. Related works

Metaheuristic algorithms have been of much importance as efficient
tools to tackle nonlinear and complex optimization issues where

Table 1
Comparison between the proposed approach and closely related prior works that already combine OBL with SMA (e.g., [10,13,16]).

Algorithm Core Idea Strengths Limitations Relation to Present Work

SCA (Sine
Cosine
Algorithm)
[10]

Uses sine and cosine mathematical
functions to update positions and
control exploration/ exploitation.

Simple, easy to implement,
competitive on many
benchmarks.

Sensitive to parameter tuning, risk of
premature convergence on multimodal
problems.

Illustrates novel update dynamics; lacks
adaptive decision strategies.

New Meta-
heuristic
[13]

Introduces a new population-based
global optimizer emphasizing
exploration ability.

Demonstrates strong global
search potential, competitive
performance.

Does not include adaptive control;
balance between exploration and
exploitation can weaken.

Shows effectiveness of new frameworks
but highlights need for adaptive
balancing.

SMA Survey
[16]

Comprehensive review of SMA and
its variants (chaotic maps, OBL,
hybrids).

Demonstrates SMA’s flexibility,
wide applications, and many
successful variants.

Variants often apply OBL blindly or
intensification operators without
systematic rules; no consensus on when
to switch.

Identifies gap: absence of adaptive OBL
decision + replacement integration.

Proposed
AOSMA

Combines adaptive OBL decision
strategy with a replacement
mechanism.

Selective exploration,
improved exploitation, faster
convergence, robust
performance.

Slightly higher computational cost. Directly addresses the gap identified in
SMA literature by integrating adaptive
exploration control with exploitation
enhancement.

Table 2
Difference between this paper’s combination of OBL and SMA and the related
work.

Algorithm Core Idea Enhancement
Strategy

Difference from
AOSMA

OJESMA (W.
C. Wang et al.
[13])

Improve SMA
using hybrid
strategies

Combines
equilibrium
optimizer, joint
opposite selection,
and OBL

Depends on external
optimizers and
hybridization,
whereas AOSMA
focuses on integrated
OBL with adaptive
exploitation

Adaptive
SMA (M. K.
Naik et al.
[10])

Enhance OBL
application
adaptively

Uses an adaptive
mechanism to decide
OBL usage; improves
exploitation by
replacing random
agents with the best
agent

Focuses mainly on
OBL decision-making
and selective replace
ment; AOSMA instead
integrates OBL with
adaptive exploitation
for broader balance

AOSMA
(Proposed)

Advance slime
mould
optimization

Combines OBL and
adaptive exploitation
techniques to balance
exploration and
exploitation
dynamically

Unlike OJESMA
(hybrid) or Adaptive
SMA (OBL-focused),
AOSMA unifies OBL
and adaptive
exploitation into a
single integrated
framework

E. Badr et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100250

2

traditional deterministic approaches are inefficient. Among them,
swarm intelligence-based approaches such as PSO, ACO, and ABC have
been found very successful in traversing extensive and complicated
search spaces. Requested by the natural behavior, these algorithms can
efficiently explore and exploit in a bid to provide efficient solutions to
computationally complex real-world problems. However, the continu
ally rising global optimization problems have motivated scholars to seek
even more flexible and hybridized methods to handle issues like pre
mature convergence and low convergence rates [8,9].

SMA, though showing its prowess in many applications, is underu
tilized with respect to its potential, primarily dynamic adaptability and
enhanced exploration mechanisms. Recent developments in SMA are
mainly directed towards hybridization with other approaches or modi
fications of update equations in the central part for enhancing global
search capability and rate of convergence. With these efforts, issues such
as maintaining diversity in the search space and local optima avoidance
still exist. This has motivated the development of the AOSMA with the
objective of integrating OBL and adaptive exploitation techniques for
further advancing the state-of-the-art in slime mould-based optimization
[10]. This section provides the related studies to introduce the novelty of
the proposed approach better.

SMA, inspired by biological behavior, is shown to be highly effective
for solving challenging stochastic optimization problems. Its ability to
imitate slime mould search patterns offers a competitive edge in global
optimization. However, it struggles with premature convergence and
suboptimal solutions in complex scenarios. To resolve this, Yang et al.
[11] proposed a multi-chaotic local operator that is introduced into the
feedback system to enhance local exploration through chaotic pertur
bations. In [12], the authors first reviewed and analyzed numerous
advanced variants of the SMA, providing a comprehensive summary,
classification, and discussion of their mechanisms and prospects. Sec
ondly, they categorized the application areas of SMA, examining its
functions, current development status, and existing limitations. The
literature review shows that SMA outperforms several well-known
metaheuristic algorithms in terms of convergence speed and accuracy
across various benchmark functions and practical optimization tasks.

Wang et al. [13] suggested the OJESMA approach, an enhanced

SMA. Through the combination of equilibrium optimizer, joint opposite
selection, and OBL, OJESMA enhances the algorithm’s performance. The
study involved applying nonparametric tests (Friedman and Wilcoxon)
to evaluate optimization performance on 10 CEC2020 benchmark
functions and 29 CEC2017 functions. The outcomes of the
non-parametric tests and the experiment demonstrate that OJESMA
performs better in terms of stability, convergence, and optimization
accuracy. The authors also ran optimization tests on the variable index
Muskingum and six engineering challenges to confirm the algorithm’s
efficacy. In [14], the authors presented an improved algorithm that
combines an adaptive search operator strategy based on the Cauchy
inverse cumulative distribution (QCMSMA) with Bloch sphere-based
elite population initialization. The Wilcoxon rank-sum test and Fried
man ranking analysis were used for statistical evaluations, along with
comparisons against a number of popular optimization techniques.

Houssein et al. [15] proposed another work that uses the SMA
adaptive guided differential evolution algorithm (SMA-AGDE) to
address some inherent weaknesses of the original SMA. By employing
AGDE’s mutation strategy within it, the hybrid approach enhances local
search power, population diversity, and prevention of getting trapped in
local minima. Comparative research involving a range of
well-established, newly developed, and high-performance meta
heuristics (such as BBO, GSA, TLBO, HHO, MRFO, CMA-ES, and the
simple SMA) revealed that SMA-AGDE was significantly better than its
alternatives in all instances of problems, being first in different problem
contexts. The research verifies that SMA-AGDE is an effective and
generic optimization platform.

In [5], the authors examined the SMA from various optimization
perspectives. The algorithm utilizes a specialized mathematical frame
work that imitates biological wave propagation using adaptive weight
ing, introducing several innovative features to enhance performance.
This design enables an effective balance between exploration and
exploitation, guiding the search efficiently toward optimal solutions. In
[16], the authors addressed a four-objective optimization problem in the
construction industry by proposing a hybrid model called AOSMA,
which integrates OBL with the SMA. To showcase the effectiveness of the
proposed approach, two real-world construction case studies were used,

Table 3
Properties of the considered standard benchmark functions.

Function Function D F min Range

F1
∑n

i=1
Xi

2 30 0 [100,-100]

F2 ∑n
i=1

Xi
2 +

∏n

i=1
|Xi|

30 0 [10,-10]

F3 ∑n
i=1

(∑i
j=1

Xj

)2 30 0 [100,-100]

F4 maxi {|x|, 1 ≤ i ≤ n} 30 0 [100,-100]
F5 ∑n− 1

i− 1

(
100(Xi+1 − Xi)

2
+ (Xi − 1)2) 30 0 [30,-30]

F6 ∑n
i=1

(Xi + 0.5)2 30 0 [100,-100]

F7
∑n

i=1

(
Xi

4 + rand (0,1)
) 30 0 [1.28,-1.28]

F8
∑n

i=1
− Xi

2sin
̅̅̅̅̅̅̅
|Xi|

√ 30 -418.98 N [500,-500]

F9
∑n

i=1

[
Xi

2 − 10cos(2πXi) + 10
] 30 0 [5.12,-5.12]

F10
− 20exp

(
− 0.2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1

x2
i

√)
−

exp
(

1
n
∑n

i=1
cos(2πxi)

)

+ 20+ e

30 0 [32,-32]

F11 1
4000

∑n
i=1

x2
i −

∏n
i=1cos

(
xi
̅̅
i

√

)

+ 1
30 0 [600,-600]

F12 π
n
{

10 sin(πy1)+
∑n− 1

i=1

(
yi+1

)2[1 + 10sin2 (πyi+1
)]

+
(
yn − 1

)2 }+

yi = 1+
xi + 1

4

u(xi , a, k, m)= {

k(xi − a)m xi > a
0 − a < xi < a

k(xi − a)m xi < − a

30 0 [50,-50]

F13 ​ 30 0 [50,-50]

E. Badr et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100250

3

where the objectives were evaluated, and the optimal solutions were
represented through Pareto fronts. OBL is occasionally introduced to
improve the algorithm’s ability to explore the search space more
effectively.

Naik et al. [10] proposed an adaptive technique for deciding whether

to apply OBL. Furthermore, the algorithm improves exploitation by
replacing a randomly selected search agent with the best-performing
one during the position update process. In [17], the authors proposed
ESMA, an improved Slime Mould Algorithm that fuses several tech
niques to enhance performance. The inclusion of Lévy flights and

Table 4
Fitness values of the proposed AOSMA and other algorithms.

Function Run fmin Sinusoidal SMA Circle SMA Singer SMA Tent SMA Logistic SMA Sine SMA Iterative SMA Mouse SMA AOSMA

F1 1 0 0 0 2.5852 0 0 0 0 0 0
2 0 0 1.21E-42 0 0 0 0 0 0
3 0 0 9.68E-50 0 0 0 0 0 0
4 0 0 1.73E-09 0 1.6446e-317 0 0.00E+00 0 0
5 0 0 2.44E-18 0 0 0 0 0 0

F2 1 0 5.03E-199 3.18E-215 6.66E-05 3.72E-158 2.71E-175 1.30E-199 3.72E-158 1.10E-240 0
2 5.09E-182 1.14E-270 1.49E-10 1.25E-215 1.73E-288 1.01E-166 1.25E-215 5.44E-163 0
3 1.69E-164 9.93E-194 0.21205 2.40E-303 4.66E-182 2.03E-177 2.40E-303 7.60E-245 0
4 3.50E-220 4.27E-218 2.15E-24 2.34E-185 2.19E-213 8.41E-173 2.34E-185 2.29E-187 0
5 1.02E-177 3.55E-209 9.99E-27 1.20E-253 4.21E-264 7.49E-264 1.20E-253 6.81E-276 0

F3 1 0.00E+00 0.00E+00 0.0078075 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0
2 0.00E+00 2.9644e-32 1.42E-77 0.00E+00 5.2707e-319 0.00E+00 0.00E+00 0.00E+00 0
3 0.00E+00 0.00E+00 191.5055 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0
4 0.00E+00 0.00E+00 1.0838 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0
5 0.00E+0000 0.00E+00 3.3663 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0

F4 1 0 2.05E-189 6.41E-192 1.16E-206 1.38E-231 7.67E-222 3.08E-166 1.38E-231 2.92E-197 0
2 5.43E-182 4.65E-192 1.23E-244 1.27E-211 2.81E-198 9.45E-204 1.27E-211 6.01E-158 0
3 7.61E-165 1.22E-242 5.90E-237 3.33E-206 3.36E-225 1.72E-197 3.33E-206 1.37E-238 0
4 3.77E-236 8.40E-174 8.32E-255 2.63E-177 1.18E-180 1.85E-150 2.63E-177 3.81E-192 0
5 8.32E-182 1.88E-189 1.19E-220 4.45E-239 5.55E-214 1.33E-174 4.45E-239 1.50E-174 0

F5 1 0 5.0595 1.0302 0.15428 28.2287 0.63358 3.1302 28.2287 0.06720 0.02504
2 2.7025 0.09351 16.1099 0.33496 1.4679 5.6199 0.33496 0.55468 26.8342
3 2.9999 0.2898 16.1381 28.1521 1.2347 0.51309 28.1521 8.9787 0.03030
4 0.22394 1.0852 0.01094 3.2781 2.1888 1.2713 3.2781 2.2301 0.02494
5 28.2597 0.15391 15.3578 4.42 1.2908 28.1758 4.42 2.9323 0.50422

yyy 1 0 0.0028185 0.0032071 0.21129 0.0079421 0.0046937 0.0035018 0.0079421 0.0083993 5.70E-05
2 0.0078915 0.005237 4.684 0.0039248 0.0092994 0.0040872 0.0039248 0.0043632 6.49E-05
3 0.0082295 0.0070498 0.65814 0.0071398 0.0061981 0.0031065 0.0071398 0.0051079 3.75E-05
4 0.0026498 0.00038786 1.2805 0.0031112 0.0051964 0.0017886 0.0031112 0.0053033 4.10E-05
5 0.0069716 0.0023814 1.10E-05 0.0041485 0.0068288 0.0039413 0.0076717 0.013709 6.01E-05

F7 1 0 0.00017136 0.00017765 0.04975 0.0003222 4.44E-05 3.47E-05 0.00032227 0.0001375 0.0001596
2 3.16E-05 0.00019332 0.0096608 0.00026656 0.00014147 0.00032235 0.00029389 0.00028793 0.00015071
3 0.0001055 0.00015583 0.015933 0.0005641 0.00021668 8.67E-05 0.0005641 0.0003751 4.72E-05
4 0.0003279 8.12E-06 0.0474 0.0004275 0.00015481 0.0001298 0.00042759 0.0001863 6.01E-06
5 0.0001248 2.68E-05 0.0030962 0.0001135 5.47E-05 0.0003885 0.00011354 0.0005044 2.88E-06

F8 1 -12,569 -12,568.589 -12,569.337 -12,563.69 -12,569.426 -12,569.4295 -12,568.447 -12,569.426 -12,569.405 -12,569.483
2 -12,569.088 -12,569.364 -12,554.71 -12,569.422 -12,569.1176 -12,569.301 -12,569.422 -12,569.255 -12,569.483
3 -12,569.141 -12,569.423 -12,569.48 -12,569.465 -12,569.087 -12,568.318 -12,569.465 -12,568.722 -12,569.483
4 -12,568.910 -12,568.803 -12,567.72 -12,569.135 -12,568.947 -12,568.002 -12,569.135 -12,569.258 -12,569.483
5 -12,568.991 -12,569.040 -12,549.79 -12,568.748 -12,568.687 -12,569.473 -12,568.748 -12,569.313 -12,569.483

F9 1 0 0 0 0.05097 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0
5 0 0 0.02342 0 0 0 0 0 0

F10 1 0 8.88E-16 8.88E-16 0.59841 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16
2 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16
3 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16
4 8.88E-16 8.88E-16 9.73E-06 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16
5 8.88E-16 8.88E-16 3.65E-10 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16

F11 1 0 0.00E+00 0.00E+00 1.02E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
4 0.00E+00 0.00E+00 0.8752 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F12 1 0 0.00019093 7.38E-05 0.0027443 0.0021737 0.011757 0.0010932 0.0021737 0.0036851 8.61E-06
2 0.00060494 0.0034431 0.0001773 0.0014124 0.0010992 0.00011355 0.0014124 0.00056797 8.36E-06
3 0.0012813 4.07E-05 0.0083147 0.0033076 0.001464 0.0027819 0.0058759 0.00070109 0.00059161
4 0.0032576 0.0019526 0.0035314 0.0044847 0.012298 0.0015544 0.003753 0.00024023 0.00058589
5 0.00030893 0.011637 0.067425 0.007021 4.36E-05 0.0093717 0.010762 0.000781 0.0032647

F13 1 0 0.0051604 0.0013586 0.30418 0.0017013 0.0060032 0.013291 0.0062827 0.010571 6.34E-05
2 0.001026 0.0026104 0.0002713 0.0010591 0.0015065 0.00015428 0.0030661 0.0037858 3.53E-05
3 0.004871 0.0017761 0.026338 0.0026932 0.0019489 0.0020771 0.0024803 0.0033837 0.087591
4 0.00084449 0.0028194 0.0071279 0.005576 0.0042496 0.0010457 0.00012182 0.0065913 0.00021984
5 0.0071283 0.0058296 0.0004936 0.0065373 0.0079408 0.0001381 0.00015165 0.018941 8.65E-05
No. of functions
reaches 0

4 3 0 4 2 4 4 4 6

E. Badr et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100250

4

selective averaging during the exploration stage enhances adaptability,
while a dynamic lens learning method helps reposition the elite solution,
steering the swarm toward optimal regions. To this end, the proposed
study and the previously introduced literature share the goal of pre
venting the algorithm from becoming caught in local optima. The dif
ference is in the method utilized. For example, in [14], dynamic random
search techniques improve the algorithm’s search efficiency. In contrast,
AOSMA reduces convergence by employing opposite-based learning and
an adaptive decision technique.

2.1. Difference between the proposed combination of OBL and SMA and
the related work

Firstly, during the application stage of OBL, the most common point
of difference is when OBL is applied within the algorithm’s lifecycle.
Starting in the initialization phase only: Some studies apply OBL only to
the initial population. An "opposite" population is generated, and the
best members from both the original and opposite populations are
selected to form a more diverse and high-quality starting point. Fol
lowed by initialization and generational update, other papers apply OBL
not only at the start but also during the iterative process of the algo
rithm. After the population is updated in a given iteration, OBL can be
used to generate opposite solutions for the new population. This helps to
prevent stagnation and escape local optima. Finally, the condition-based
application: A more sophisticated approach is to apply OBL based on
certain conditions, such as population stagnation or slow convergence.
This ensures the more computationally intensive OBL operation is only
used when needed. Tables 1 and 2 summarize the key comparisons and

the novelty of the proposed work compared to the existing literature.
As demonstrated in Ref. [18], AOSMA can be used to address

real-world issues described in the abstract. These issues can also be
included as benchmark instances. For instance, in (18), the traditional
SMA is combined with two more search techniques. While the second
uses the Lévy flight distribution (LFD), a real-world problem, to enhance
exploration in the early phases and exploitation in the latter stages of the
search process, the first uses opposition-based learning (OBL) to speed
up convergence.

3. Proposed model

By combining OBL and adaptive control mechanisms, AOSMA
significantly improves upon the original SMA. This improves the algo
rithm’s convergence speed, solution diversity, and fitness value in
challenging optimization tasks. This section introduces the proposed
AOSMA version. The majority of SMA variations with OBL either apply it
blindly at every iteration or concentrate just on exploitation without an
adaptive rule, which makes it easy to identify the specific research need
in the suggested strategy. None combines a straightforward replacement
technique with an adaptive OBL choice. This work introduces both to
close that gap.

In terms of conceptual analysis, AOSMA enhances the standard SMA
by incorporating adaptive opposition-based learning, which generates
opposite candidate solutions during the search to maintain diversity and
achieve a more effective balance between exploration and exploitation.
By contrast, OJESMA combines the Equilibrium Optimizer with joint
opposite selection and opposition-based learning, forming a more

Fig. 1. (a) Convergence curve for f1, (b) Convergence curve for f2, (c) Convergence curve for f3, (d) Convergence curve for f4 obtained by 9 SMA versions for
benchmark functions (500 iterations).

E. Badr et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100250

5

advanced hybrid framework that improves convergence stability and
accelerates optimization. QCMSMA introduces a Cauchy-based adaptive
search operator alongside Bloch sphere-based elite population initiali
zation, thereby boosting exploration capability and enhancing popula
tion diversity from the outset. Meanwhile, SMA-AGDE integrates SMA
with adaptive guided differential evolution, leveraging DE mutation
strategies to strengthen local search performance, foster diversity, and
reduce the likelihood of premature convergence.

The fitness function of an optimization or evolutionary problem,
written as f(x), is a statistic that assesses how well a particular solution
(represented by x) performs or how close it is to achieving the intended
goals. Assigning a numerical score (fitness value) to every possible so
lution is a fundamental part of evolutionary and genetic algorithms;
higher scores generally signal better performance and are more likely to
be chosen for subsequent generations.

3.1. Mathematical formulation of the AOSMA

Assume that the search space contains N slime mould agents oper
ating within a search space bounded by an upper limit (UB) and a lower
limit (LB). The ith slime mould’s location in a d-dimensional search space
is given by Xᵢ = (Xᵢ¹, Xᵢ², …, Xᵢᵈ), where i ranges from 1 to N. Its fitness,
also referred to as odor, is denoted by f(Xᵢ). Therefore, at iteration t, the
positions and fitness values of the N slime mould agents at the current
iteration t can be represented as follows:

X(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1
1 x2

1 … xd
1

x1
2 x2

2 … xd
2

⋮ ⋮ ⋮ ⋮
x1

N x2
N … xd

N

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎣

x1

x2

xN

xN

⎤

⎥
⎦ ∀ N ∈ R (1)

f (X) = [f (X1), f (X2), f (X3),⋯, f (XN)] ∀ N ∈ R (2)

The position of slime mould for the subsequent iteration (t + 1) in
SMA is updated using Eq. (3).

X(t+1) =

⎧
⎨

⎩

XLB(t) + Vb(W.XA(t) − XB(t), if r1 ≥ δ and r2 < pi
Vc.Xi(t), if r1 ≥ δ and r2 ≥ pi

rand. (UB − LB) + LB, if r1 < δ
∀ i

∈ [1,N]

(3)

where XLB refers to the best-performing slime mould in the current
iteration, XA and XB are two randomly chosen individuals from the
current population, W acts as the weighting factor, Vb and Vc are random
velocity terms drawn from uniform distributions over the ranges [–b, b]
and [–c, c], and r₁ and r₂ are random values in the interval [0, 1]. The
parameters b and c are updated at each iteration t using the following
equations.

b = arctanh
(
−
(t

T
+ 1

)
(4)

Fig. 2. (a) Convergence curve for f5, (b) Convergence curve for f6, (c) Convergence curve for f7, (d) Convergence curve for f8 obtained by 9 SMA versions for
benchmark functions (500 iterations).

E. Badr et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100250

6

c = 1 −
t
T

(5)

where the maximum iteration is denoted by T. A fixed probability of
0.03 is assigned for randomly initializing a slime mould’s position. The
parameter pi is a decision threshold for the ith slime mould, which de
termines whether to update its position using the global best or retain its
own position. It is calculated based on the fitness function f(x) as

follows.

pi = tanh
⃒
⃒f (Xi) − fGB

⃒
⃒, ∀ i ∈ [1,N] (6)

fGB = f (XGB) (7)

where f(xi) is the fitness of the ith agent Xi, and fGB is the best global
fitness. At the ith iteration, the weight W for all N slime moulds is
determined using the following equation.

Fig. 3. (a) Convergence curve for f9, (b) Convergence curve for f10, (c) Convergence curve for f11, (d) Convergence curve for f12, (e) Convergence curve for f13 4
obtained by 9 SMA versions for benchmark functions (500 iterations).

E. Badr et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100250

7

W
(
SortIndf (i)

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 + rand.log
(

fLB − f(Xi)

fLB − fLW
+ 1

)

, 1 ≤ i ≤
N
2

1 + rand.log
(

fLB − f(Xi)

fLB − fLW
+ 1

)

,
N
2
< i ≤ N

, ∀ N ∈ R

(8)

The terms fLB and fLW refer to the best and worst fitness values within
the local population. For minimization tasks, the fitness values are sor
ted in increasing order.
[
Sortf , SortIndf

]
= sort(f) (9)

The optimal fitness value within the local region, along with the
associated best-performing individual XLB, is determined as follows.

fLB = f
(
Sortf (1)

)
(10)

XLB = X
(
SortIndf (1)

)
(11)

The local worst fitness flw is concluded as follows.

fLW = f
(
Sortf (N)

)
(12)

3.2. Opposition-based learning

In OBL, for each slime mould (i = 1, 2, …, N), an opposite position Xoi
is estimated relative to its current location Xni in the search space. This
value is compared to determine whether it offers a better solution for the
next iteration, thus reducing the risk of getting trapped in local optima
and enhancing convergence speed. The computation of Xoi in the jth

dimension is as follows.

Xoij(t) = min(Xni(t)) + max (Xni(t)) − Xnij(t) (13)

3.3. Adaptive decision strategy

If the slime mould progresses along a path with decreasing nutrient
quality, the algorithm adaptively responds using the current and pre
vious fitness values within the AOSMA framework. Adaptive decision-
making supports additional inquiry through OBL. AOSMA’s adaptive
decision approach is used to update the location for each subsequent
iteration, as modeled below.

Xi(t+ 1) =
{

Xni(t) if f(Xni(t)) ≤ f(Xi(t)),
Xsi(t) if f(Xni(t)) > f(Xi(t)),

∀i ∈ [1,N] (14)

Xsi(t) =
{

Xoi(t) if f(Xoi(t)) < f(Xni(t))
Xni(t) if f(Xoi(t)) ≥ f(Xni(t))

(15)

4. Results and discussion

This section presents a comparative analysis between the proposed
approach and other competing algorithms. All methods were tested
under consistent conditions with a population size of 30 and 500 iter
ations, repeated five times. The proposed AOSMA algorithm was coded
in MATLAB and executed on a machine with an Intel Core i7 2.20 GHz
CPU and 12 GB RAM, using thirteen benchmark functions for
evaluation.

The metrics that are utilized are Agent fitness values (f(Xᵢ)), thresh
olds applied, and a decision threshold (pᵢ) that governs whether an agent
maintains its current position or updates it toward the global best. To
preserve diversity and prevent stagnation, a fixed probability of 0.03 is
also used to reinitialize an agent’s position randomly. Additionally, UB
and LB vary for every function. Reassessment Frequency indicates that
all agents’ adaptive decisions are reassessed at each iteration. The

Fig. 4. (a) Boxplot for f1, (b) Boxplot for f2, (c) Boxplot for f3, (d) Boxplot for f4.

E. Badr et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100250

8

algorithm determines whether to initiate OBL or carry on with regular
position updates at each iteration by comparing the current fitness to the
prior fitness.

4.1. Simulation setup

Analysis of time and space complexity of an algorithm plays a central
role in computational studies and practical applications, as it provides
significant insights into their efficiency and scalability. Time complexity
directly affects the algorithm’s feasibility for large-scale or real-time
problems. Similarly, space complexity quantifies the time of computa
tion required in terms of memory, an essential aspect in discussing
resource constraints, especially in embedded systems, big data systems,
or limited-memory devices. Initially, the proposed AOSMA algorithm
generates N search agents, each with a dimensionality of D, resulting in
an initialization time complexity of O(N × D). The algorithm then
evaluates the fitness of every agent throughout the optimization process,
contributing to a total complexity of O(tmax⋅N⋅D), where tmax is the
maximum number of iterations. Furthermore, the AOSMA requires O
(N⋅D) space, accounting for the storage of all search agents and their
dimensions.

Experimental evaluations are conducted on thirteen conventional
benchmarks. Table 3 summarizes mathematical formulations for the
typical considered benchmarks. Unimodal benchmarks are commonly
used to assess algorithms’ exploitation capabilities due to their one
global optimum. Basic functions are more difficult to manage than
unimodal benchmarks due to their large number of local optima that can
be used to measure exploration capabilities. Metaheuristics’ ability to

solve real-world engineering challenges can be estimated using common
benchmarks. To ensure a fair comparison, 500 total iterations are used
as the criterion condition, with a swarm size of 30. Eight methods are
used to compare with AOSMA. To minimize the impact of chance on the
experiment, all algorithms are conducted five times.

The selection of the 13 benchmark functions was guided by the need
for a standardized, transparent, and reproducible framework to evaluate
optimization algorithms across diverse problem characteristics. These
benchmarks, including the widely used sphere function, were chosen for
their prevalence in the optimization literature and the variety of
mathematical properties they embody. Collectively, they cover sepa
rable and non-separable variables, unimodal and multimodal land
scapes, and varying dimensionalities, providing a comprehensive test
bed to assess the balance between exploration and exploitation in met
aheuristic algorithms. Beyond their theoretical value, many of these
functions capture features commonly encountered in real-world appli
cations. For instance, the sphere function models convex and smooth
landscapes typical of engineering design tasks requiring rapid conver
gence, while multimodal functions such as Rastrigin and Ackley emulate
the complex, rugged search spaces found in scheduling, routing, and
resource allocation problems.

F6 is not a special case of F7.
∑n

i=1 (Xi + 0.5)2 is not a special case of
∑n

i=1
(
Xi

4 +rand (0,1)
)

because the first expression is a deterministic
mathematical operation that squares a value, while the second is a
function that adds a random floating-point number to a constant. The
expression (Xi + 0.5)2 performs addition and multiplication by 2,
whereas

∑n
i=1 (Xi

4 + rand (0, 1)generates a random number between

Fig. 5. (a) Boxplot for f5, (b) Boxplot for f6, (c) Boxplot for f7, (d) Boxplot for f8.

E. Badr et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100250

9

0 and 1 and adds it to the value of 1. Additionally, F7 cannot substitute
F6 because they test different algorithmic properties. Both F6 (shifted
sphere) and F7 (quartic with stochastic term) remain unchanged
because they capture different features: simple convex convergence
versus higher-order, noisy landscapes: F6 cannot replace F7 since it tests
basic convergence behavior, whereas F7 analyzes resistance to noise and
sensitivity to large variable magnitudes.

Parameters used in F6 can be explained as following, the shift

parameter α=0.5 has been introduced in F6 in order to move the global
minimum farther from the origin. Without the shift, the function sim
plifies to the conventional sphere model, whose symmetric and centered
terrain makes it straightforward for many optimizers. The issue is
transformed into a shifted-sphere function by setting α=0.5, which
guarantees that optimizers cannot take advantage of origin symmetry
and must instead show that they can find minima in a displaced search
space. The selected value adds significant diversity to the benchmark

Fig. 6. (a) Boxplot for f9, (b) Boxplot for f10, (c) Boxplot for f11, (d) Boxplot for f12, (e) Boxplot for f13.

E. Badr et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100250

10

suite while maintaining the function’s convexity and simplicity. On the
other hand, common shifts in benchmark functions include randomly
generated shift vectors or fixed values like α=1. Random shifts offer
greater diversity across runs, although larger shifts (e.g., α=1) increase
the distance from the origin. In contrast to these, the reasonable selec
tion of α=0.5 maintains the function’s simplicity while making it non-
trivial, balancing interpretability with difficulty. If α=0 it will be iden
tical to F1.

To create tiny stochastic perturbations that mimic noise while
maintaining the function’s numerical stability and boundedness, the
randomization in F7 is defined inside the interval (0,1). By making this
decision, the random term is guaranteed to behave as a secondary
disturbance rather than overpowering the function’s predictable
portion. The noise amplitude would significantly grow if the randomi
zation were scaled to wider ranges, such (0100) or (0,1000). This might
obscure the underlying landscape structure, skew the optimization dif
ficulty, and possibly result in an unstable or deceptive performance
evaluation. Because it strikes a compromise between realism and regu
lated complexity, the (0,1) interval is thus a common and suitable
option.

4.2. Simulation results

This section compares the proposed AOSMA to the chaotic SMA on
thirteen benchmark problems to show its effectiveness and competi
tiveness. Table 4 shows the experimental results for eight algorithms and
the proposed AOSMA on thirteen typical benchmarks. AOSMA improves

the performance of chaotic SMA on the unimodal tests F2, F3, and F4.
Furthermore, the benefits of AOSMA over the chaotic SMA are retained.
In most circumstances, AOSMA outperforms chaotic SMA in terms of
competitiveness. AOSMA consistently achieves quicker convergence and
greater ability to reach the global optimum compared to the chaotic
SMA. The advantages of applying AOSMA in optimization are clearly
presented in Table 4. It shows that AOSMA improves performance with 6
functions as F1, F2, F3, F4, F9, and F11. Additionally, this analysis shows
its superior performance when compared to Mouse SMA, Iterative SMA,
and the other remaining chaotic versions of SMA. While Mouse SMA,
Iterative SMA, Sine SMA, Tent SMA, and Sinusoidal SMA improve per
formance on functions F1, F3, F9, and F11.

Figs. 1–3 present the convergence curve of the AOSMA and the other
considered algorithms for the previously introduced thirteen bench
marks. Boxplots are utilized to assess the fitness performance of chaotic
maps. The red line indicates the median fitness value of each algorithm.
AOSMA shows the most favorable results with the lowest median,
whereas Singer SMA records the highest. In Fig. 1(a), all SMA variants
show a sharp decrease in fitness within the first 20–30 iterations,
reflecting their strong exploratory behavior and their ability to identify
promising areas of the search space rapidly. This rapid early improve
ment is characteristic of SMA-based algorithms, which naturally employ
oscillatory movement patterns that enhance initial exploration. By
approximately the 50th iteration, almost all methods, including the
proposed AOSMA, achieve fitness values close to zero. This suggests that
the benchmark problem is relatively straightforward for these algo
rithms, allowing them to converge quickly toward a near-optimal

Fig. 7. Performance of the proposed AOSMA compared with the other four SMA versions [For F3-F6]. (a) Convergence curve for F3, (b) Convergence curve for F4,
(c) Convergence curve for F5, (d) Convergence curve for F6, obtained by 5 SMA versions for benchmark functions (500 iterations).

E. Badr et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100250

11

solution.
Overall, the figure shows that all SMA variants, including AOSMA,

efficiently solve the benchmark problem, achieving fast convergence
and almost identical final fitness values. AOSMA performs comparably
to the top variants, confirming its effectiveness and indicating that this
test function does not strongly distinguish performance differences
among the SMA methods.

In Fig. 2(d), most SMA variants show a steep decline from high initial
fitness values to significantly lower ones within the first 30–70 itera
tions, indicating that they quickly move away from inferior starting

points and identify promising regions early in the search. Each curve
corresponds to a specific SMA variant. Some variants achieve low fitness
values rapidly and then level off, while others progress more gradually.
Tent SMA, Sinusoidal SMA, and Sine SMA (red, yellow, and dark blue)
exhibit rapid convergence followed by early stagnation, indicating
intense short-term exploitation but limited long-term improvement. In
contrast, Iterative SMA and Circle SMA exhibit similar convergence
patterns but plateau at a later stage, reflecting a more moderate
exploratory behavior.

Fig. 4-a presents the boxplot comparison of the fitness values derived

Fig. 8. Performance of the proposed AOSMA compared with the other four SMA versions [For F7-F11]. (a) Convergence curve for F7, (b) Convergence curve for F8,
(c) Convergence curve for F9, (d) Convergence curve for F10, (e) Convergence curve for F11, obtained by 5 SMA versions for benchmark functions (500 iterations).

E. Badr et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100250

12

from eight distinct optimization techniques applied to the benchmark
function F1. The y-axis shows the relevant fitness values, while the x-
axis displays the algorithms: Sinusoidal SMA, Circle SMA, Singer SMA,
Tent SMA, Logistic SMA, Sine SMA, Iterative SMA, and AOSMA. The
graph clearly shows that the majority of algorithms perform well in
optimization, showing very low or almost zero fitness values. In contrast
to the others, the Circle SMA exhibits a noticeably higher spread and
median value, indicating either worse performance or greater unpre
dictability. The AOSMA algorithm performs competitively and steadily
among the compared approaches, as seen by its continually low fitness
values.

Fig. 4-b presents a boxplot evaluating the effectiveness of eight
optimization methods according to their fitness values using the
benchmark F2. The algorithms, Sinusoidal SMA, Circle SMA, Singer
SMA, Tent SMA, Logistic SMA, Sine SMA, Iterative SMA, and AOSMA,
are represented on the x-axis, and the appropriate fitness values are
displayed on the y-axis. The plot indicates effective optimization, as the
majority of methods obtain very low fitness values. With a noticeably
higher median and interquartile range, the Singer SMA stands out,
indicating worse performance and more variability. Algorithms with
minimum variance and lower fitness results, such as AOSMA and Tent
SMA, on the other hand, exhibit excellent optimization capability and
great stability.

Fig. 4-c depicts a boxplot of fitness values for eight optimization
techniques, allowing a comparative examination of their performance
for the F3 benchmark function. According to the statistics, Singer SMA
generates a median fitness value that is significantly larger and has a
broader range, which suggests less efficient optimization and greater
performance variability. On the other hand, the remaining methods
consistently obtain low fitness values, indicating higher optimization

performance and robustness, especially AOSMA, Iterative SMA, and
Tent SMA. This demonstrates that, out of the algorithms compared,
AOSMA is among the most dependable and efficient. Fig. 4-d highlights
the performance of eight optimization methods on the F4 benchmark
function by comparing them in a boxplot according to their fitness
values. With a noticeably lower (more negative) fitness value, the Lo
gistic SMA sticks out from the plot, suggesting inadequate performance
in this instance. The other methods, on the other hand, consistently
maintain fitness values near zero, indicating superior optimization re
sults. AOSMA and Iterative SMA are dependable options for addressing
the optimization problem depicted because of their robust and constant
performance.

Fig. 5 presents the fitness scores for the eight considered algorithms,
for the benchmarks F5, F6, F7, and F8. Also, Fig. 6 presents the fitness
scores for the benchmarks F9, F10, F11, F12, and F13. The algorithms
are shown on the x-axis, and the fitness values, which reveal how well
each algorithm optimizes, are displayed on the y-axis. The data shows
that the algorithms differ noticeably from one another. With the lowest
median fitness values, Circle SMA and Sine SMA appear to perform
better in this situation. On the other hand, Singer SMA and AOSMA
perform comparatively poorly on the examined task, as evidenced by
their larger median fitness scores. The variations in the boxplots show
how the algorithms differ in terms of robustness and stability.

For further evaluation, the proposed AOSMA was compared to four
other SMA versions. Figs. 7 and 8 present the results of the proposed
AOSMA compared to the other four SMA versions for benchmark func
tions of F3-F11. Every algorithm exhibits a distinct decreasing trend,
indicating that as the number of iterations increases, the quality of the
solutions improves. The magenta (SMA-AGDE) and green (QCMSMA)
curves exhibit remarkably rapid convergence, achieving very low fitness
values early on and maintaining consistent gains throughout.
Throughout, the blue (QJESMA) curve shows a steady decline that
smoothly converges to lower fitness values. As iterations progress, the
black (AOSMA) and red (RCLSMOA) curves exhibit stable convergence
behavior, rapidly declining from their initial higher values before sta
bilizing. The convergence curves of five algorithms over 500 iterations
on the Rosenbrock function (f4) are displayed in this picture.

Every algorithm begins with extremely high fitness values, ranging
from 10 to 8, and drops off quickly in the initial repetitions. Within the
first 50 iterations, RCLSMAOA, OJESMA, and QCMSMA show rapid
convergence, achieving values that are nearly zero. SMA-AGDE im
proves progressively over iterations and converges more slowly. AOSMA
exhibits competitive performance, with a smooth transition to near-
optimal values and a distinct, steady decline. The Rosenbrock function
is handled well by all approaches overall, albeit there are variations in

Fig. 9. Ablation study of four SMA versions at functions (a) F2 and (b) F1.

Table 5
Average wall-clock time per run and per iteration for AOSMA and SMA variants
at sphere function F1, 30D, max iteration = 500.

Algorithm Average runtime per run (s) Average runtime per iteration (s)

Baseline SMA 0.4446 0.000889
AOSMA 0.6730 0.001346
Logistic SMA 0.4526 0.000905
Tent SMA 0.4576 0.000915
Sine SMA 0.6555 0.001311
Sinusoidal SMA 0.4628 0.000926
Singer SMA 0.4565 0.000913
Circle SMA 0.4530 0.000906
Mouse SMA 0.4481 0.000896
Iterative SMA 0.6288 0.001258

E. Badr et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100250

13

stability and convergence rate. OJESMA, QCMSMA, and RCLSMAOA all
perform extremely steadily and swiftly approach near-optimal values.
SMA-AGDE has a greater fitness trajectory over the course of the itera
tions and converges significantly more slowly. AOSMA exhibits a bal
ance: it performs competitively and converges more smoothly than
SMA-AGDE; however, it lags somewhat behind RCLSMAOA and
QCMSMA in terms of final precision.

AOSMA’s parameters were selected to maintain a balanced search
behavior while ensuring practical implementation and reproducibility,
using standard SMA defaults to minimize manual tuning. Uniform set
tings for population size, iteration count, and reinitialization probability
produced stable performance across benchmarks. Although initial
findings indicate that excessively large populations or frequent OBL
activations offer limited additional benefit due to the algorithm’s
inherent diversity mechanisms, further sensitivity studies, such as
exploring different population sizes or OBL activation strategies, would
provide more quantitative insight and help confirm the robustness of
these parameter choices. Incorporating real-world optimization case
studies would further strengthen the manuscript’s practical impact, as
benchmark functions do not fully capture the constraints, noise, and
interdependencies present in actual applications. Since AOSMA’s
adaptive opposition learning and best-agent replacement strategies are
particularly effective for complex and resource-constrained problems,
evaluating the algorithm on tasks such as engineering design or feature
selection would illustrate its practical performance and expand its
applicability without altering its core framework.

AOSMA exhibits consistent performance as dimensionality grows,
largely due to its adaptive opposition mechanism, which preserves
population diversity, and the best-agent replacement strategy, which
promotes faster convergence toward promising regions. In 30-dimen
sional benchmark evaluations, the algorithm consistently achieved
competitive or superior outcomes across unimodal, multimodal, and
composite problem classes. Its complexity scales linearly with dimen
sion, O(ND) per iteration and O(TmaxND)overall, preventing exponential
increases in runtime or degradation in solution quality. Consequently,
AOSMA maintains robust search efficiency in higher-dimensional spaces
without requiring specialized parameter tuning. Future work may
extend these findings to ultra-high-dimensional settings (e.g., D > 100)
or real-world feature selection tasks to further assess scalability.

Furthermore, Fig. 9 presents an ablation study of four SMA versions
at functions F1 and F2. The red curve represents the SMA baseline. The
standard SMA begins with high fitness values and decreases gradually,
but plateaus at a higher level than other variants, reflecting weaker
optimization ability. The blue dashed curve represents the SMA + OBL.
Incorporating non-adaptive OBL yields only a slight improvement over
the baseline, with a convergence trend that nearly overlaps it, indicating
limited effectiveness. The green dash-dotted curve represents the SMA +
replacement. This variant demonstrates the fastest and most pronounced
improvement, quickly reaching lower fitness values and maintaining
strong convergence, highlighting the effectiveness of the replacement
mechanism. The black curve represents the proposed AOSMA. By inte
grating adaptive OBL with replacement, AOSMA achieves stable and
competitive performance. Although its early progress is slower than
SMA+ Replacement, it ultimately converges to the lowest fitness, of
fering the best balance between exploration and exploitation.

A non-parametric statistical test for comparing the performance of
three or more algorithms (or treatments) across various problems or
datasets is the Friedman Test, often known as Friedman’s ANOVA. In
optimization and machine learning research, it is very typical to seek to
determine whether one algorithm (like AOSMA) performs noticeably
better than others. Here’s what the Friedman analysis (F1–F9 subset)
shows:

a) Average ranks: AOSMA achieves the lowest average rank (best
overall), indicating it tends to perform more strongly across
functions.

b) Friedman test statistic: Since the p-value is 0.0002 (< 0.05), the
differences among algorithms are statistically significant. This means
we can reject the null hypothesis (“all algorithms are equal”) and
conclude that at least one algorithm, in this case, AOSMA, with the
best average rank, is significantly better.

Table 5 presents the average wall-clock runtime per run and per
iteration for the baseline SMA, its chaotic variants, and AOSMA on the
Sphere benchmark function (30 dimensions, 30 agents, 500 iterations).
The baseline SMA and most chaotic variants (Logistic, Tent, Sinusoidal,
Singer, Circle, Mouse, Iterative) demonstrate relatively low runtimes,
averaging around 0.44–0.46 s per run, with per-iteration costs on the
order of 10⁻³ seconds. Within the chaotic variants, Sine SMA and Iter
ative SMA show slightly higher runtimes, reflecting the extra compu
tational effort introduced by their nonlinear update dynamics.

In contrast, AOSMA records a moderately higher runtime of 0.673 s
per run (0.001346 s per iteration). This increase is anticipated since
AOSMA incorporates opposition-based learning and adaptive exploita
tion mechanisms, which add extra computational steps per iteration.
Nonetheless, this modest selection is offset by AOSMA’s superior opti
mization accuracy, stability, and convergence speed, as evidenced by
the experimental results. Ultimately, the added computational cost
represents a reasonable trade-off for achieving improved search balance
and higher solution quality, reaffirming the effectiveness of AOSMA in
enhancing slime mould-based optimization.

OBL increases computational overhead by effectively doubling the
number of candidate solutions, both the original and their opposites,
that must be evaluated and maintained. Similarly, replacement strate
gies, which determine which individuals advance to the next generation,
introduce additional costs through comparison and selection operations.
Although these mechanisms enhance optimization by boosting popula
tion diversity and reducing the risk of premature convergence, the extra
computations required for generating and filtering solutions contribute
to the overall runtime. As a result, they may be less practical for highly
cost-sensitive optimization tasks or scenarios with limited computa
tional resources.

Two additional mechanisms-opposition-based learning, which as
sesses opposing solutions, and the replacement strategy, which swaps
out weaker agents for stronger ones- are responsible for the extra run
time in AOSMA. Compared to the entire optimization process, these
phases are lightweight and add a little computational burden that scales
linearly with issue size. Importantly, the overhead is a good trade-off
because this minor expense results in substantial gains in exploration,
exploitation, and solution quality.

5. Conclusion and future work

This study proposed an AOSMA aimed at addressing function opti
mization challenges. However, because the suggested algorithm makes
an adaptive decision about whether to use the OBL, it shows superior
exploration and exploitation. In conclusion, this approach reduces the
possibility of misguiding the exploration phase in some cases by 50 % by
using a single random search agent instead of the SMA. Additionally,
this method has an adaptive mechanism built in to determine when to
utilize OBL to limit the exploration period. Lastly, the proposed tech
nique is thought to be helpful for function optimization to address
practical engineering issues.

As a future work, we can combine with metaheuristics (e.g., PSO, DE,
GA) to leverage strengths and overcome weaknesses (e.g., slow
convergence or premature convergence). Additionally, including one or
two state-of-the-art optimizers outside the SMA family, consider using
larger benchmark sets or higher dimensionalities would better evaluate
the proposed method’s generalization and robustness. Also, this would
offer deeper insights into the effectiveness of the proposed approach.

E. Badr et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100250

14

Data availability statement

The data that support the findings of this study are available in the
manuscript. Further information related to the considered data can be
obtained by reasonable request from the corresponding author.

Funding

This work was funded by Prince Sultan University.

CRediT authorship contribution statement

Elsayed Badr: Writing – original draft, Visualization, Validation,
Supervision, Software, Resources, Methodology, Investigation, Formal
analysis, Data curation, Conceptualization. Mostafa Abdullah Ibra
him: Writing – original draft, Visualization, Validation, Software,
Methodology, Investigation, Formal analysis, Data curation, Conceptu
alization. Diaa Salama: Writing – original draft, Visualization, Valida
tion, Software, Resources, Project administration, Methodology,
Investigation, Formal analysis, Data curation, Conceptualization.
Mohammed ElAffendi: Writing – review & editing, Visualization,
Validation, Supervision, Software, Resources, Methodology, Investiga
tion, Funding acquisition, Formal analysis, Data curation, Conceptuali
zation. Abdelhamied A Ateya: Writing – review & editing,
Visualization, Validation, Software, Resources, Project administration,
Methodology, Investigation, Funding acquisition, Formal analysis, Data
curation, Conceptualization. Mohamed Hammad: Writing – original
draft, Visualization, Validation, Software, Resources, Methodology,
Investigation, Funding acquisition, Formal analysis, Data curation,
Conceptualization. Alaa Yassin: Writing – review & editing, Writing –
original draft, Visualization, Validation, Software, Resources, Project
administration, Methodology, Investigation, Formal analysis, Data
curation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

The Authors would like to thank Prince Sultan University for paying

the APC of this article.

References

[1] M. Zhou, M. Cui, D. Xu, S. Zhu, Z. Zhao, A. Abusorrah, Evolutionary optimization
methods for high-dimensional expensive problems: a survey, IEEE/CAA J. Autom.
Sin. 11 (5) (2024) 1092–1105.

[2] E.H.H. Sumiea, et al., Enhanced deep deterministic policy gradient algorithm using
grey wolf optimizer for continuous control tasks, IEEE Access 11 (2023)
139771–139784.

[3] E.H. Houssein, M.K. Saeed, G. Hu, M.M. Al-Sayed, Metaheuristics for solving global
and engineering optimization problems: review, applications, open issues and
challenges, Arch. Comput. Methods Eng. 31 (8) (2024) 4485–4519.

[4] R. Rishabh, K.N. Das, A critical review on metaheuristic algorithms based multi-
criteria decision-making approaches and applications, Arch. Comput. Methods Eng.
32 (2) (2024) 963–993.

[5] F.S. Gharehchopogh, A. Ucan, T. Ibrikci, B. Arasteh, G. Isik, Slime Mould
algorithm: a comprehensive survey of its variants and applications, Arch. Comput.
Methods Eng. 30 (4) (2023) 2683–2723.

[6] T. Yu, J. Pan, Q. Qian, Improved slime mould algorithm by perfecting bionic-based
mechanisms, Int. J. Bio-Inspired Comput. 22 (1) (2023) 1–15.

[7] H. Chen, Z. Wang, H. Jia, X. Zhou, L. Abualigah, Hybrid slime mold and arithmetic
optimization algorithm with random center learning and restart mutation,
Biomimetics 8 (5) (2023) 396 (Basel).

[8] S. Larabi-Marie-Sainte, R. Alskireen, S. Alhalawani, Emerging applications of bio-
inspired algorithms in image segmentation, Electronics 10 (24) (2021) 3116
(Basel).

[9] I. Abunadi, et al., An automated glowworm swarm optimization with an inception-
based deep convolutional neural network for COVID-19 diagnosis and
classification, Healthcare 10 (4) (2022) 697 (Basel).

[10] M.K. Naik, R. Panda, A. Abraham, Adaptive opposition slime mould algorithm, Soft
Comput. 25 (22) (2021) 14297–14313.

[11] J. Yang, Y. Zhang, T. Jin, Z. Lei, Y. Todo, S. Gao, Maximum Lyapunov exponent-
based multiple chaotic slime mold algorithm for real-world optimization, Sci. Rep.
13 (1) (2023) 12744.

[12] H. Chen, C. Li, M. Mafarja, A.A. Heidari, Y. Chen, Z. Cai, Slime mould algorithm: a
comprehensive review of recent variants and applications, Int. J. Syst. Sci. 54 (1)
(2023) 204–235.

[13] W.-C. Wang, W.-H. Tao, W.-C. Tian, H.-F. Zang, A multi-strategy slime mould
algorithm for solving global optimization and engineering optimization problems,
Evol. Intell. 17 (5–6) (2024) 3865–3889.

[14] Z. Duan, X. Qian, W. Song, Multi-strategy enhancde slime mould algorithm for
optimization problems, IEEE Access 13 (2025) 1. –1.

[15] E.H. Houssein, M.A. Mahdy, M.J. Blondin, D. Shebl, W.M. Mohamed, Hybrid slime
mould algorithm with adaptive guided differential evolution algorithm for
combinatorial and global optimization problems, Expert Syst. Appl. 174 (114689)
(2021) 114689.

[16] P.V.H. Son, L.N.Q. Khoi, Optimization in construction management using adaptive
opposition slime mould algorithm, Adv. Civ. Eng. 2023 (2023) 1–20.

[17] W. Xiong, D. Li, D. Zhu, R. Li, Z. Lin, An enhanced slime mould algorithm combines
multiple strategies, Axioms 12 (10) (2023) 907.

[18] Laith Abualigah, Ali Diabat, Mohamed Abd Elaziz, Improved slime mould
algorithm by opposition-based learning and Levy flight distribution for global
optimization and advances in real-world engineering problems, J. Ambient. Intell.
Humaniz. Comput. 14 (2) (2023) 1163–1202.

E. Badr et al. BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100250

15

http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0001
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0001
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0001
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0002
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0002
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0002
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0003
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0003
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0003
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0004
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0004
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0004
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0005
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0005
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0005
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0006
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0006
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0007
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0007
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0007
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0008
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0008
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0008
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0009
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0009
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0009
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0010
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0010
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0011
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0011
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0011
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0012
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0012
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0012
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0013
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0013
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0013
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0014
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0014
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0015
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0015
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0015
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0015
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0016
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0016
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0017
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0017
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0018
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0018
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0018
http://refhub.elsevier.com/S2772-4859(25)00063-8/sbref0018

	An adaptive opposite slime mold feature selection algorithm for complex optimization problems
	1 Introduction
	2 Related works
	2.1 Difference between the proposed combination of OBL and SMA and the related work

	3 Proposed model
	3.1 Mathematical formulation of the AOSMA
	3.2 Opposition-based learning
	3.3 Adaptive decision strategy

	4 Results and discussion
	4.1 Simulation setup
	4.2 Simulation results

	5 Conclusion and future work
	Data availability statement
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

