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A B S T R A C T

The slime mould algorithm (SMA) has recently emerged as a soaring metaheuristic strategy to function opti
mization problems due to its solid exploration-exploitation balance that enables it to converge efficiently towards 
high-quality solutions. In spite of its broader applications, however, there remain areas where the algorithm is 
constrained in diversified exploration and the scope of its exploitation mechanisms. In bridging these loopholes, 
this work introduces a new variant known as the adaptive opposition SMA (AOSMA). AOSMA involves an 
adaptive opposition-based learning (OBL) method, which learns online how to add opposition-based solutions at 
the iteration process to enhance exploration abilities and avoid premature convergence. The adaptive policy 
enables the algorithm to escape local optima more effectively by occasionally generating alternative candidate 
solutions. Additionally, for the sake of increased exploitation, AOSMA also incorporates a plan in which the 
randomly selected search agent is progressively replaced with the current best-performing agent during position 
updating. The replacement process increases the focus of the algorithm towards prospective regions of the search 
space, and thus it converges more quickly towards the global optimum. The implemented AOSMA was 
exhaustively validated with both qualitative and quantitative measures in terms of thirteen rigorously proven 
benchmark test functions involving a variety of unimodal, multimodal, and composite landscapes to test its 
optimization ability extensively. Comparative tests on a collection of state-of-the-art metaheuristic algorithms 
confirmed that AOSMA consistently produces higher or highly comparable performances across a variety of 
problem instances. The experimental results confirm the robustness, adaptability, and improved search ability of 
the algorithm, highlighting its potential as an efficient optimization method for complex real-world problems. 
With the efficient fusion of adaptive exploration and improved exploitation, AOSMA provides a vital contribution 
to the field of research into swarm intelligence and metaheuristic optimization.

1. Introduction

Maximum utilization of resources is a basic requirement in numerous 
scientific, engineering, and industrial applications. Because of the 
increasing complexity of real-world problems and the scarcity of re
sources, optimization has become a necessity for ensuring the highest 
performance, cost-effectiveness, and operating efficiency. Optimization 

problems can be broadly categorized into deterministic and stochastic 
approaches, depending upon the type of problem, each with its advan
tages and methodological strategies depending upon the problem 
landscape [1]. Deterministic optimization methods, such as linear and 
nonlinear programming, rely extensively on derivative information. 
These methods work best when there is structured problem formulation 
and the search space is smooth or linear. Deterministic approaches excel 
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in linear or weakly nonlinear spaces but experience difficulties when 
confronted with highly nonlinear, multi-modal, or discontinuous spaces. 
In such challenging cases, their dependence on gradient information can 
be a limiting aspect, conditioning them to get stuck in local optima or 
not to converge at all [2].

Stochastic optimization techniques, by contrast, never employ direct 
gradient information. This kind of algorithm forms the foundation for 
metaheuristic optimization methods. Metaheuristics are designed to 
provide rigorous, general-purpose solutions that can be applied to a 
large class of complex problems without specific knowledge of the 
mathematical form [3]. Their inherent advantages include simplicity, 
flexibility, independence of gradients, and less reliance on initial 
candidate solutions, traits that have driven their popularity and dra
matic rise over the past few years. Metaheuristic algorithms have proven 
outstandingly successful in optimization problem-solving in numerous 
applications, from engineering design and scheduling to machine 
learning, hyperparameter tuning, and biomedical image analysis. They 
are largely inspired by natural, physical, or social processes and thus 
form a vast and growing taxonomy. Metaheuristic algorithms fall under 
four broad classes: swarm intelligence-based, evolutionary-based, 
physics-based, and human-inspired algorithms [4].

These nature-inspired metaheuristic algorithms possess specific 

strengths as they emulate some adaptive and intelligent behavior from 
nature, resulting in very efficient tools. An innovative nature-inspired 
optimization algorithm is the slime mould algorithm (SMA), which is 
based on the nature-inspired foraging behavior and dynamic oscillatory 
movement exhibited by slime moulds (Physarum polycephalum) [5]. 
SMA has been demonstrated to possess a strong capability to handle 
extremely complex, high-dimensional, and multi-modal optimization 
problems. Due to its strong global search capability and excellent 
resistance to local optima, SMA has been effectively applied to many 
applications in machine learning, engineering design, feature selection, 
and image processing [6].

Although it has an outstanding performance, SMA also faces some 
disadvantages, particularly concerning its exploration and exploitation. 
There were findings indicating that SMA often has acceptable explora
tion of the search space. However, its capacity for exploitation is still in 
need of enhancement to achieve faster convergence and higher-quality 
solutions. To address such limitations, numerous methods have been 
proposed in recent years. As documented in the literature [5], the two 
most significant improvement strategies that have emerged are hy
bridization, where SMA is combined with other metaheuristics to 
leverage complementary strengths, and algorithmic refinement, which 
involves modifying or improving SMA’s basic equations and mecha
nisms to improve performance.

A case in point is Chen et al. [7], which proposed the RCLSMAOA 
algorithm, a hybrid metaheuristic that combined the SMA and arith
metic optimization algorithm (AOA). The hybridization approach 
enhanced the convergence rate and solution accuracy, showing the po
tential of blended algorithmic solutions to counter weaknesses in indi
vidual approaches. Building on such advancements, this work proposes 
an adaptive variant of SMA in the guise of the adaptive opposition SMA 
(AOSMA). AOSMA employs an adaptive opposition-based learning 
(OBL) process to adaptively determine when to inject opposition solu
tions, enhancing the ability of the algorithm to explore without 
precipitating premature convergence. In addition, a novel exploitation 
enhancement method is incorporated through automatically substitut
ing a randomly selected search agent with the best-performing agent at 
the position update phase, focusing the search on promising regions.

The remainder of this paper has the following structure: Section 2
provides a comprehensive review of existing literature and recent ad
ditions to the SMA; Section 3 provides a detailed methodology and the 
AOSMA model suggested; Section 4 provides experimental findings and 
comparative analyses; and finally, Section 5 summarizes the research 
with conclusions and future study directions.

2. Related works

Metaheuristic algorithms have been of much importance as efficient 
tools to tackle nonlinear and complex optimization issues where 

Table 1 
Comparison between the proposed approach and closely related prior works that already combine OBL with SMA (e.g., [10,13,16]).

Algorithm Core Idea Strengths Limitations Relation to Present Work

SCA (Sine 
Cosine 
Algorithm) 
[10]

Uses sine and cosine mathematical 
functions to update positions and 
control exploration/ exploitation.

Simple, easy to implement, 
competitive on many 
benchmarks.

Sensitive to parameter tuning, risk of 
premature convergence on multimodal 
problems.

Illustrates novel update dynamics; lacks 
adaptive decision strategies.

New Meta- 
heuristic 
[13]

Introduces a new population-based 
global optimizer emphasizing 
exploration ability.

Demonstrates strong global 
search potential, competitive 
performance.

Does not include adaptive control; 
balance between exploration and 
exploitation can weaken.

Shows effectiveness of new frameworks 
but highlights need for adaptive 
balancing.

SMA Survey 
[16]

Comprehensive review of SMA and 
its variants (chaotic maps, OBL, 
hybrids).

Demonstrates SMA’s flexibility, 
wide applications, and many 
successful variants.

Variants often apply OBL blindly or 
intensification operators without 
systematic rules; no consensus on when 
to switch.

Identifies gap: absence of adaptive OBL 
decision + replacement integration.

Proposed 
AOSMA

Combines adaptive OBL decision 
strategy with a replacement 
mechanism.

Selective exploration, 
improved exploitation, faster 
convergence, robust 
performance.

Slightly higher computational cost. Directly addresses the gap identified in 
SMA literature by integrating adaptive 
exploration control with exploitation 
enhancement.

Table 2 
Difference between this paper’s combination of OBL and SMA and the related 
work.

Algorithm Core Idea Enhancement 
Strategy

Difference from 
AOSMA

OJESMA (W. 
C. Wang et al. 
[13])

Improve SMA 
using hybrid 
strategies

Combines 
equilibrium 
optimizer, joint 
opposite selection, 
and OBL

Depends on external 
optimizers and 
hybridization, 
whereas AOSMA 
focuses on integrated 
OBL with adaptive 
exploitation

Adaptive 
SMA (M. K. 
Naik et al. 
[10])

Enhance OBL 
application 
adaptively

Uses an adaptive 
mechanism to decide 
OBL usage; improves 
exploitation by 
replacing random 
agents with the best 
agent

Focuses mainly on 
OBL decision-making 
and selective replace
ment; AOSMA instead 
integrates OBL with 
adaptive exploitation 
for broader balance

AOSMA 
(Proposed)

Advance slime 
mould 
optimization

Combines OBL and 
adaptive exploitation 
techniques to balance 
exploration and 
exploitation 
dynamically

Unlike OJESMA 
(hybrid) or Adaptive 
SMA (OBL-focused), 
AOSMA unifies OBL 
and adaptive 
exploitation into a 
single integrated 
framework
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traditional deterministic approaches are inefficient. Among them, 
swarm intelligence-based approaches such as PSO, ACO, and ABC have 
been found very successful in traversing extensive and complicated 
search spaces. Requested by the natural behavior, these algorithms can 
efficiently explore and exploit in a bid to provide efficient solutions to 
computationally complex real-world problems. However, the continu
ally rising global optimization problems have motivated scholars to seek 
even more flexible and hybridized methods to handle issues like pre
mature convergence and low convergence rates [8,9].

SMA, though showing its prowess in many applications, is underu
tilized with respect to its potential, primarily dynamic adaptability and 
enhanced exploration mechanisms. Recent developments in SMA are 
mainly directed towards hybridization with other approaches or modi
fications of update equations in the central part for enhancing global 
search capability and rate of convergence. With these efforts, issues such 
as maintaining diversity in the search space and local optima avoidance 
still exist. This has motivated the development of the AOSMA with the 
objective of integrating OBL and adaptive exploitation techniques for 
further advancing the state-of-the-art in slime mould-based optimization 
[10]. This section provides the related studies to introduce the novelty of 
the proposed approach better.

SMA, inspired by biological behavior, is shown to be highly effective 
for solving challenging stochastic optimization problems. Its ability to 
imitate slime mould search patterns offers a competitive edge in global 
optimization. However, it struggles with premature convergence and 
suboptimal solutions in complex scenarios. To resolve this, Yang et al. 
[11] proposed a multi-chaotic local operator that is introduced into the 
feedback system to enhance local exploration through chaotic pertur
bations. In [12], the authors first reviewed and analyzed numerous 
advanced variants of the SMA, providing a comprehensive summary, 
classification, and discussion of their mechanisms and prospects. Sec
ondly, they categorized the application areas of SMA, examining its 
functions, current development status, and existing limitations. The 
literature review shows that SMA outperforms several well-known 
metaheuristic algorithms in terms of convergence speed and accuracy 
across various benchmark functions and practical optimization tasks.

Wang et al. [13] suggested the OJESMA approach, an enhanced 

SMA. Through the combination of equilibrium optimizer, joint opposite 
selection, and OBL, OJESMA enhances the algorithm’s performance. The 
study involved applying nonparametric tests (Friedman and Wilcoxon) 
to evaluate optimization performance on 10 CEC2020 benchmark 
functions and 29 CEC2017 functions. The outcomes of the 
non-parametric tests and the experiment demonstrate that OJESMA 
performs better in terms of stability, convergence, and optimization 
accuracy. The authors also ran optimization tests on the variable index 
Muskingum and six engineering challenges to confirm the algorithm’s 
efficacy. In [14], the authors presented an improved algorithm that 
combines an adaptive search operator strategy based on the Cauchy 
inverse cumulative distribution (QCMSMA) with Bloch sphere-based 
elite population initialization. The Wilcoxon rank-sum test and Fried
man ranking analysis were used for statistical evaluations, along with 
comparisons against a number of popular optimization techniques.

Houssein et al. [15] proposed another work that uses the SMA 
adaptive guided differential evolution algorithm (SMA-AGDE) to 
address some inherent weaknesses of the original SMA. By employing 
AGDE’s mutation strategy within it, the hybrid approach enhances local 
search power, population diversity, and prevention of getting trapped in 
local minima. Comparative research involving a range of 
well-established, newly developed, and high-performance meta
heuristics (such as BBO, GSA, TLBO, HHO, MRFO, CMA-ES, and the 
simple SMA) revealed that SMA-AGDE was significantly better than its 
alternatives in all instances of problems, being first in different problem 
contexts. The research verifies that SMA-AGDE is an effective and 
generic optimization platform.

In [5], the authors examined the SMA from various optimization 
perspectives. The algorithm utilizes a specialized mathematical frame
work that imitates biological wave propagation using adaptive weight
ing, introducing several innovative features to enhance performance. 
This design enables an effective balance between exploration and 
exploitation, guiding the search efficiently toward optimal solutions. In 
[16], the authors addressed a four-objective optimization problem in the 
construction industry by proposing a hybrid model called AOSMA, 
which integrates OBL with the SMA. To showcase the effectiveness of the 
proposed approach, two real-world construction case studies were used, 

Table 3 
Properties of the considered standard benchmark functions.

Function Function D F min Range

F1
∑n

i=1
Xi

2 30 0 [100,-100]

F2 ∑n
i=1

Xi
2 +

∏n

i=1
|Xi|

30 0 [10,-10]

F3 ∑n
i=1

(∑i
j=1

Xj

)2 30 0 [100,-100]

F4 maxi {|x|, 1 ≤ i ≤ n} 30 0 [100,-100]
F5 ∑n− 1

i− 1

(
100(Xi+1 − Xi)

2
+ (Xi − 1)2) 30 0 [30,-30]

F6 ∑n
i=1

(Xi + 0.5)2 30 0 [100,-100]

F7
∑n

i=1

(
Xi

4 + rand (0,1)
) 30 0 [1.28,-1.28]

F8
∑n

i=1
− Xi

2sin
̅̅̅̅̅̅̅
|Xi|

√ 30 -418.98 N [500,-500]

F9
∑n

i=1

[
Xi

2 − 10cos(2πXi) + 10
] 30 0 [5.12,-5.12]

F10
− 20exp

(
− 0.2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1

x2
i

√ )
−

exp
(

1
n
∑n

i=1
cos(2πxi)

)

+ 20+ e

30 0 [32,-32]

F11 1
4000

∑n
i=1

x2
i −

∏n
i=1cos

(
xi
̅̅
i

√

)

+ 1
30 0 [600,-600]

F12 π
n
{

10 sin(πy1)+
∑n− 1

i=1

(
yi+1

)2[1 + 10sin2 ( πyi+1
)]

+
(
yn − 1

)2 }+

yi = 1+
xi + 1

4 

u(xi , a, k, m)= {

k(xi − a)m xi > a
0 − a < xi < a

k(xi − a)m xi < − a

30 0 [50,-50]

F13 ​ 30 0 [50,-50]
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where the objectives were evaluated, and the optimal solutions were 
represented through Pareto fronts. OBL is occasionally introduced to 
improve the algorithm’s ability to explore the search space more 
effectively.

Naik et al. [10] proposed an adaptive technique for deciding whether 

to apply OBL. Furthermore, the algorithm improves exploitation by 
replacing a randomly selected search agent with the best-performing 
one during the position update process. In [17], the authors proposed 
ESMA, an improved Slime Mould Algorithm that fuses several tech
niques to enhance performance. The inclusion of Lévy flights and 

Table 4 
Fitness values of the proposed AOSMA and other algorithms.

Function Run fmin Sinusoidal SMA Circle SMA Singer SMA Tent SMA Logistic SMA Sine SMA Iterative SMA Mouse SMA AOSMA

F1 1 0 0 0 2.5852 0 0 0 0 0 0
2 0 0 1.21E-42 0 0 0 0 0 0
3 0 0 9.68E-50 0 0 0 0 0 0
4 0 0 1.73E-09 0 1.6446e-317 0 0.00E+00 0 0
5 0 0 2.44E-18 0 0 0 0 0 0

F2 1 0 5.03E-199 3.18E-215 6.66E-05 3.72E-158 2.71E-175 1.30E-199 3.72E-158 1.10E-240 0
2 5.09E-182 1.14E-270 1.49E-10 1.25E-215 1.73E-288 1.01E-166 1.25E-215 5.44E-163 0
3 1.69E-164 9.93E-194 0.21205 2.40E-303 4.66E-182 2.03E-177 2.40E-303 7.60E-245 0
4 3.50E-220 4.27E-218 2.15E-24 2.34E-185 2.19E-213 8.41E-173 2.34E-185 2.29E-187 0
5 1.02E-177 3.55E-209 9.99E-27 1.20E-253 4.21E-264 7.49E-264 1.20E-253 6.81E-276 0

F3 1 0.00E+00 0.00E+00 0.0078075 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0
2 0.00E+00 2.9644e-32 1.42E-77 0.00E+00 5.2707e-319 0.00E+00 0.00E+00 0.00E+00 0
3 0.00E+00 0.00E+00 191.5055 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0
4 0.00E+00 0.00E+00 1.0838 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0
5 0.00E+0000 0.00E+00 3.3663 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0

F4 1 0 2.05E-189 6.41E-192 1.16E-206 1.38E-231 7.67E-222 3.08E-166 1.38E-231 2.92E-197 0
2 5.43E-182 4.65E-192 1.23E-244 1.27E-211 2.81E-198 9.45E-204 1.27E-211 6.01E-158 0
3 7.61E-165 1.22E-242 5.90E-237 3.33E-206 3.36E-225 1.72E-197 3.33E-206 1.37E-238 0
4 3.77E-236 8.40E-174 8.32E-255 2.63E-177 1.18E-180 1.85E-150 2.63E-177 3.81E-192 0
5 8.32E-182 1.88E-189 1.19E-220 4.45E-239 5.55E-214 1.33E-174 4.45E-239 1.50E-174 0

F5 1 0 5.0595 1.0302 0.15428 28.2287 0.63358 3.1302 28.2287 0.06720 0.02504
2 2.7025 0.09351 16.1099 0.33496 1.4679 5.6199 0.33496 0.55468 26.8342
3 2.9999 0.2898 16.1381 28.1521 1.2347 0.51309 28.1521 8.9787 0.03030
4 0.22394 1.0852 0.01094 3.2781 2.1888 1.2713 3.2781 2.2301 0.02494
5 28.2597 0.15391 15.3578 4.42 1.2908 28.1758 4.42 2.9323 0.50422

yyy 1 0 0.0028185 0.0032071 0.21129 0.0079421 0.0046937 0.0035018 0.0079421 0.0083993 5.70E-05
2 0.0078915 0.005237 4.684 0.0039248 0.0092994 0.0040872 0.0039248 0.0043632 6.49E-05
3 0.0082295 0.0070498 0.65814 0.0071398 0.0061981 0.0031065 0.0071398 0.0051079 3.75E-05
4 0.0026498 0.00038786 1.2805 0.0031112 0.0051964 0.0017886 0.0031112 0.0053033 4.10E-05
5 0.0069716 0.0023814 1.10E-05 0.0041485 0.0068288 0.0039413 0.0076717 0.013709 6.01E-05

F7 1 0 0.00017136 0.00017765 0.04975 0.0003222 4.44E-05 3.47E-05 0.00032227 0.0001375 0.0001596
2 3.16E-05 0.00019332 0.0096608 0.00026656 0.00014147 0.00032235 0.00029389 0.00028793 0.00015071
3 0.0001055 0.00015583 0.015933 0.0005641 0.00021668 8.67E-05 0.0005641 0.0003751 4.72E-05
4 0.0003279 8.12E-06 0.0474 0.0004275 0.00015481 0.0001298 0.00042759 0.0001863 6.01E-06
5 0.0001248 2.68E-05 0.0030962 0.0001135 5.47E-05 0.0003885 0.00011354 0.0005044 2.88E-06

F8 1 -12,569 -12,568.589 -12,569.337 -12,563.69 -12,569.426 -12,569.4295 -12,568.447 -12,569.426 -12,569.405 -12,569.483
2 -12,569.088 -12,569.364 -12,554.71 -12,569.422 -12,569.1176 -12,569.301 -12,569.422 -12,569.255 -12,569.483
3 -12,569.141 -12,569.423 -12,569.48 -12,569.465 -12,569.087 -12,568.318 -12,569.465 -12,568.722 -12,569.483
4 -12,568.910 -12,568.803 -12,567.72 -12,569.135 -12,568.947 -12,568.002 -12,569.135 -12,569.258 -12,569.483
5 -12,568.991 -12,569.040 -12,549.79 -12,568.748 -12,568.687 -12,569.473 -12,568.748 -12,569.313 -12,569.483

F9 1 0 0 0 0.05097 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0
5 0 0 0.02342 0 0 0 0 0 0

F10 1 0 8.88E-16 8.88E-16 0.59841 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16
2 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16
3 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16
4 8.88E-16 8.88E-16 9.73E-06 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16
5 8.88E-16 8.88E-16 3.65E-10 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16

F11 1 0 0.00E+00 0.00E+00 1.02E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
4 0.00E+00 0.00E+00 0.8752 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F12 1 0 0.00019093 7.38E-05 0.0027443 0.0021737 0.011757 0.0010932 0.0021737 0.0036851 8.61E-06
2 0.00060494 0.0034431 0.0001773 0.0014124 0.0010992 0.00011355 0.0014124 0.00056797 8.36E-06
3 0.0012813 4.07E-05 0.0083147 0.0033076 0.001464 0.0027819 0.0058759 0.00070109 0.00059161
4 0.0032576 0.0019526 0.0035314 0.0044847 0.012298 0.0015544 0.003753 0.00024023 0.00058589
5 0.00030893 0.011637 0.067425 0.007021 4.36E-05 0.0093717 0.010762 0.000781 0.0032647

F13 1 0 0.0051604 0.0013586 0.30418 0.0017013 0.0060032 0.013291 0.0062827 0.010571 6.34E-05
2 0.001026 0.0026104 0.0002713 0.0010591 0.0015065 0.00015428 0.0030661 0.0037858 3.53E-05
3 0.004871 0.0017761 0.026338 0.0026932 0.0019489 0.0020771 0.0024803 0.0033837 0.087591
4 0.00084449 0.0028194 0.0071279 0.005576 0.0042496 0.0010457 0.00012182 0.0065913 0.00021984
5 0.0071283 0.0058296 0.0004936 0.0065373 0.0079408 0.0001381 0.00015165 0.018941 8.65E-05
No. of functions 
reaches 0

4 3 0 4 2 4 4 4 6
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selective averaging during the exploration stage enhances adaptability, 
while a dynamic lens learning method helps reposition the elite solution, 
steering the swarm toward optimal regions. To this end, the proposed 
study and the previously introduced literature share the goal of pre
venting the algorithm from becoming caught in local optima. The dif
ference is in the method utilized. For example, in [14], dynamic random 
search techniques improve the algorithm’s search efficiency. In contrast, 
AOSMA reduces convergence by employing opposite-based learning and 
an adaptive decision technique.

2.1. Difference between the proposed combination of OBL and SMA and 
the related work

Firstly, during the application stage of OBL, the most common point 
of difference is when OBL is applied within the algorithm’s lifecycle. 
Starting in the initialization phase only: Some studies apply OBL only to 
the initial population. An "opposite" population is generated, and the 
best members from both the original and opposite populations are 
selected to form a more diverse and high-quality starting point. Fol
lowed by initialization and generational update, other papers apply OBL 
not only at the start but also during the iterative process of the algo
rithm. After the population is updated in a given iteration, OBL can be 
used to generate opposite solutions for the new population. This helps to 
prevent stagnation and escape local optima. Finally, the condition-based 
application: A more sophisticated approach is to apply OBL based on 
certain conditions, such as population stagnation or slow convergence. 
This ensures the more computationally intensive OBL operation is only 
used when needed. Tables 1 and 2 summarize the key comparisons and 

the novelty of the proposed work compared to the existing literature.
As demonstrated in Ref. [18], AOSMA can be used to address 

real-world issues described in the abstract. These issues can also be 
included as benchmark instances. For instance, in (18), the traditional 
SMA is combined with two more search techniques. While the second 
uses the Lévy flight distribution (LFD), a real-world problem, to enhance 
exploration in the early phases and exploitation in the latter stages of the 
search process, the first uses opposition-based learning (OBL) to speed 
up convergence.

3. Proposed model

By combining OBL and adaptive control mechanisms, AOSMA 
significantly improves upon the original SMA. This improves the algo
rithm’s convergence speed, solution diversity, and fitness value in 
challenging optimization tasks. This section introduces the proposed 
AOSMA version. The majority of SMA variations with OBL either apply it 
blindly at every iteration or concentrate just on exploitation without an 
adaptive rule, which makes it easy to identify the specific research need 
in the suggested strategy. None combines a straightforward replacement 
technique with an adaptive OBL choice. This work introduces both to 
close that gap.

In terms of conceptual analysis, AOSMA enhances the standard SMA 
by incorporating adaptive opposition-based learning, which generates 
opposite candidate solutions during the search to maintain diversity and 
achieve a more effective balance between exploration and exploitation. 
By contrast, OJESMA combines the Equilibrium Optimizer with joint 
opposite selection and opposition-based learning, forming a more 

Fig. 1. (a) Convergence curve for f1, (b) Convergence curve for f2, (c) Convergence curve for f3, (d) Convergence curve for f4 obtained by 9 SMA versions for 
benchmark functions (500 iterations).
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advanced hybrid framework that improves convergence stability and 
accelerates optimization. QCMSMA introduces a Cauchy-based adaptive 
search operator alongside Bloch sphere-based elite population initiali
zation, thereby boosting exploration capability and enhancing popula
tion diversity from the outset. Meanwhile, SMA-AGDE integrates SMA 
with adaptive guided differential evolution, leveraging DE mutation 
strategies to strengthen local search performance, foster diversity, and 
reduce the likelihood of premature convergence.

The fitness function of an optimization or evolutionary problem, 
written as f(x), is a statistic that assesses how well a particular solution 
(represented by x) performs or how close it is to achieving the intended 
goals. Assigning a numerical score (fitness value) to every possible so
lution is a fundamental part of evolutionary and genetic algorithms; 
higher scores generally signal better performance and are more likely to 
be chosen for subsequent generations.

3.1. Mathematical formulation of the AOSMA

Assume that the search space contains N slime mould agents oper
ating within a search space bounded by an upper limit (UB) and a lower 
limit (LB). The ith slime mould’s location in a d-dimensional search space 
is given by Xᵢ = (Xᵢ¹, Xᵢ², …, Xᵢᵈ), where i ranges from 1 to N. Its fitness, 
also referred to as odor, is denoted by f(Xᵢ). Therefore, at iteration t, the 
positions and fitness values of the N slime mould agents at the current 
iteration t can be represented as follows: 

X(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1
1 x2

1 … xd
1

x1
2 x2

2 … xd
2

⋮ ⋮ ⋮ ⋮
x1

N x2
N … xd

N

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎣

x1

x2

xN

xN

⎤

⎥
⎦ ∀ N ∈ R (1) 

f (X) = [f (X1), f (X2), f (X3),⋯, f (XN)] ∀ N ∈ R (2) 

The position of slime mould for the subsequent iteration (t + 1) in 
SMA is updated using Eq. (3). 

X(t+1) =

⎧
⎨

⎩

XLB(t) + Vb(W.XA(t) − XB(t), if r1 ≥ δ and r2 < pi
Vc.Xi(t), if r1 ≥ δ and r2 ≥ pi

rand. (UB − LB) + LB, if r1 < δ
∀ i

∈ [1,N]

(3) 

where XLB refers to the best-performing slime mould in the current 
iteration, XA and XB are two randomly chosen individuals from the 
current population, W acts as the weighting factor, Vb and Vc are random 
velocity terms drawn from uniform distributions over the ranges [–b, b] 
and [–c, c], and r₁ and r₂ are random values in the interval [0, 1]. The 
parameters b and c are updated at each iteration t using the following 
equations. 

b = arctanh
(
−
( t

T
+ 1

)
(4) 

Fig. 2. (a) Convergence curve for f5, (b) Convergence curve for f6, (c) Convergence curve for f7, (d) Convergence curve for f8 obtained by 9 SMA versions for 
benchmark functions (500 iterations).
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c = 1 −
t
T

(5) 

where the maximum iteration is denoted by T. A fixed probability of 
0.03 is assigned for randomly initializing a slime mould’s position. The 
parameter pi is a decision threshold for the ith slime mould, which de
termines whether to update its position using the global best or retain its 
own position. It is calculated based on the fitness function f(x) as 

follows. 

pi = tanh
⃒
⃒f (Xi) − fGB

⃒
⃒, ∀ i ∈ [1,N] (6) 

fGB = f (XGB) (7) 

where f(xi) is the fitness of the ith agent Xi, and fGB is the best global 
fitness. At the ith iteration, the weight W for all N slime moulds is 
determined using the following equation. 

Fig. 3. (a) Convergence curve for f9, (b) Convergence curve for f10, (c) Convergence curve for f11, (d) Convergence curve for f12, (e) Convergence curve for f13 4 
obtained by 9 SMA versions for benchmark functions (500 iterations).
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W
(
SortIndf (i)

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 + rand.log
(

fLB − f(Xi)

fLB − fLW
+ 1

)

, 1 ≤ i ≤
N
2

1 + rand.log
(

fLB − f(Xi)

fLB − fLW
+ 1

)

,
N
2
< i ≤ N

, ∀ N ∈ R

(8) 

The terms fLB and fLW refer to the best and worst fitness values within 
the local population. For minimization tasks, the fitness values are sor
ted in increasing order. 
[
Sortf , SortIndf

]
= sort(f) (9) 

The optimal fitness value within the local region, along with the 
associated best-performing individual XLB, is determined as follows. 

fLB = f
(
Sortf (1)

)
(10) 

XLB = X
(
SortIndf (1)

)
(11) 

The local worst fitness flw is concluded as follows. 

fLW = f
(
Sortf (N)

)
(12) 

3.2. Opposition-based learning

In OBL, for each slime mould (i = 1, 2, …, N), an opposite position Xoi 
is estimated relative to its current location Xni in the search space. This 
value is compared to determine whether it offers a better solution for the 
next iteration, thus reducing the risk of getting trapped in local optima 
and enhancing convergence speed. The computation of Xoi in the jth 

dimension is as follows. 

Xoij(t) = min(Xni(t)) + max (Xni(t)) − Xnij(t) (13) 

3.3. Adaptive decision strategy

If the slime mould progresses along a path with decreasing nutrient 
quality, the algorithm adaptively responds using the current and pre
vious fitness values within the AOSMA framework. Adaptive decision- 
making supports additional inquiry through OBL. AOSMA’s adaptive 
decision approach is used to update the location for each subsequent 
iteration, as modeled below. 

Xi(t+ 1) =
{

Xni(t) if f(Xni(t)) ≤ f(Xi(t)),
Xsi(t) if f(Xni(t)) > f(Xi(t)),

∀i ∈ [1,N] (14) 

Xsi(t) =
{

Xoi(t) if f(Xoi(t)) < f(Xni(t))
Xni(t) if f(Xoi(t)) ≥ f(Xni(t))

(15) 

4. Results and discussion

This section presents a comparative analysis between the proposed 
approach and other competing algorithms. All methods were tested 
under consistent conditions with a population size of 30 and 500 iter
ations, repeated five times. The proposed AOSMA algorithm was coded 
in MATLAB and executed on a machine with an Intel Core i7 2.20 GHz 
CPU and 12 GB RAM, using thirteen benchmark functions for 
evaluation.

The metrics that are utilized are Agent fitness values (f(Xᵢ)), thresh
olds applied, and a decision threshold (pᵢ) that governs whether an agent 
maintains its current position or updates it toward the global best. To 
preserve diversity and prevent stagnation, a fixed probability of 0.03 is 
also used to reinitialize an agent’s position randomly. Additionally, UB 
and LB vary for every function. Reassessment Frequency indicates that 
all agents’ adaptive decisions are reassessed at each iteration. The 

Fig. 4. (a) Boxplot for f1, (b) Boxplot for f2, (c) Boxplot for f3, (d) Boxplot for f4.
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algorithm determines whether to initiate OBL or carry on with regular 
position updates at each iteration by comparing the current fitness to the 
prior fitness.

4.1. Simulation setup

Analysis of time and space complexity of an algorithm plays a central 
role in computational studies and practical applications, as it provides 
significant insights into their efficiency and scalability. Time complexity 
directly affects the algorithm’s feasibility for large-scale or real-time 
problems. Similarly, space complexity quantifies the time of computa
tion required in terms of memory, an essential aspect in discussing 
resource constraints, especially in embedded systems, big data systems, 
or limited-memory devices. Initially, the proposed AOSMA algorithm 
generates N search agents, each with a dimensionality of D, resulting in 
an initialization time complexity of O(N × D). The algorithm then 
evaluates the fitness of every agent throughout the optimization process, 
contributing to a total complexity of O(tmax⋅N⋅D), where tmax is the 
maximum number of iterations. Furthermore, the AOSMA requires O 
(N⋅D) space, accounting for the storage of all search agents and their 
dimensions.

Experimental evaluations are conducted on thirteen conventional 
benchmarks. Table 3 summarizes mathematical formulations for the 
typical considered benchmarks. Unimodal benchmarks are commonly 
used to assess algorithms’ exploitation capabilities due to their one 
global optimum. Basic functions are more difficult to manage than 
unimodal benchmarks due to their large number of local optima that can 
be used to measure exploration capabilities. Metaheuristics’ ability to 

solve real-world engineering challenges can be estimated using common 
benchmarks. To ensure a fair comparison, 500 total iterations are used 
as the criterion condition, with a swarm size of 30. Eight methods are 
used to compare with AOSMA. To minimize the impact of chance on the 
experiment, all algorithms are conducted five times.

The selection of the 13 benchmark functions was guided by the need 
for a standardized, transparent, and reproducible framework to evaluate 
optimization algorithms across diverse problem characteristics. These 
benchmarks, including the widely used sphere function, were chosen for 
their prevalence in the optimization literature and the variety of 
mathematical properties they embody. Collectively, they cover sepa
rable and non-separable variables, unimodal and multimodal land
scapes, and varying dimensionalities, providing a comprehensive test 
bed to assess the balance between exploration and exploitation in met
aheuristic algorithms. Beyond their theoretical value, many of these 
functions capture features commonly encountered in real-world appli
cations. For instance, the sphere function models convex and smooth 
landscapes typical of engineering design tasks requiring rapid conver
gence, while multimodal functions such as Rastrigin and Ackley emulate 
the complex, rugged search spaces found in scheduling, routing, and 
resource allocation problems.

F6 is not a special case of F7. 
∑n

i=1 (Xi + 0.5)2 is not a special case of 
∑n

i=1
(
Xi

4 +rand (0,1)
)

because the first expression is a deterministic 
mathematical operation that squares a value, while the second is a 
function that adds a random floating-point number to a constant. The 
expression (Xi + 0.5)2 performs addition and multiplication by 2, 
whereas 

∑n
i=1 (Xi

4 + rand (0, 1)generates a random number between 

Fig. 5. (a) Boxplot for f5, (b) Boxplot for f6, (c) Boxplot for f7, (d) Boxplot for f8.
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0 and 1 and adds it to the value of 1. Additionally, F7 cannot substitute 
F6 because they test different algorithmic properties. Both F6 (shifted 
sphere) and F7 (quartic with stochastic term) remain unchanged 
because they capture different features: simple convex convergence 
versus higher-order, noisy landscapes: F6 cannot replace F7 since it tests 
basic convergence behavior, whereas F7 analyzes resistance to noise and 
sensitivity to large variable magnitudes.

Parameters used in F6 can be explained as following, the shift 

parameter α=0.5 has been introduced in F6 in order to move the global 
minimum farther from the origin. Without the shift, the function sim
plifies to the conventional sphere model, whose symmetric and centered 
terrain makes it straightforward for many optimizers. The issue is 
transformed into a shifted-sphere function by setting α=0.5, which 
guarantees that optimizers cannot take advantage of origin symmetry 
and must instead show that they can find minima in a displaced search 
space. The selected value adds significant diversity to the benchmark 

Fig. 6. (a) Boxplot for f9, (b) Boxplot for f10, (c) Boxplot for f11, (d) Boxplot for f12, (e) Boxplot for f13.
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suite while maintaining the function’s convexity and simplicity. On the 
other hand, common shifts in benchmark functions include randomly 
generated shift vectors or fixed values like α=1. Random shifts offer 
greater diversity across runs, although larger shifts (e.g., α=1) increase 
the distance from the origin. In contrast to these, the reasonable selec
tion of α=0.5 maintains the function’s simplicity while making it non- 
trivial, balancing interpretability with difficulty. If α=0 it will be iden
tical to F1.

To create tiny stochastic perturbations that mimic noise while 
maintaining the function’s numerical stability and boundedness, the 
randomization in F7 is defined inside the interval (0,1). By making this 
decision, the random term is guaranteed to behave as a secondary 
disturbance rather than overpowering the function’s predictable 
portion. The noise amplitude would significantly grow if the randomi
zation were scaled to wider ranges, such (0100) or (0,1000). This might 
obscure the underlying landscape structure, skew the optimization dif
ficulty, and possibly result in an unstable or deceptive performance 
evaluation. Because it strikes a compromise between realism and regu
lated complexity, the (0,1) interval is thus a common and suitable 
option.

4.2. Simulation results

This section compares the proposed AOSMA to the chaotic SMA on 
thirteen benchmark problems to show its effectiveness and competi
tiveness. Table 4 shows the experimental results for eight algorithms and 
the proposed AOSMA on thirteen typical benchmarks. AOSMA improves 

the performance of chaotic SMA on the unimodal tests F2, F3, and F4. 
Furthermore, the benefits of AOSMA over the chaotic SMA are retained. 
In most circumstances, AOSMA outperforms chaotic SMA in terms of 
competitiveness. AOSMA consistently achieves quicker convergence and 
greater ability to reach the global optimum compared to the chaotic 
SMA. The advantages of applying AOSMA in optimization are clearly 
presented in Table 4. It shows that AOSMA improves performance with 6 
functions as F1, F2, F3, F4, F9, and F11. Additionally, this analysis shows 
its superior performance when compared to Mouse SMA, Iterative SMA, 
and the other remaining chaotic versions of SMA. While Mouse SMA, 
Iterative SMA, Sine SMA, Tent SMA, and Sinusoidal SMA improve per
formance on functions F1, F3, F9, and F11.

Figs. 1–3 present the convergence curve of the AOSMA and the other 
considered algorithms for the previously introduced thirteen bench
marks. Boxplots are utilized to assess the fitness performance of chaotic 
maps. The red line indicates the median fitness value of each algorithm. 
AOSMA shows the most favorable results with the lowest median, 
whereas Singer SMA records the highest. In Fig. 1(a), all SMA variants 
show a sharp decrease in fitness within the first 20–30 iterations, 
reflecting their strong exploratory behavior and their ability to identify 
promising areas of the search space rapidly. This rapid early improve
ment is characteristic of SMA-based algorithms, which naturally employ 
oscillatory movement patterns that enhance initial exploration. By 
approximately the 50th iteration, almost all methods, including the 
proposed AOSMA, achieve fitness values close to zero. This suggests that 
the benchmark problem is relatively straightforward for these algo
rithms, allowing them to converge quickly toward a near-optimal 

Fig. 7. Performance of the proposed AOSMA compared with the other four SMA versions [For F3-F6]. (a) Convergence curve for F3, (b) Convergence curve for F4, 
(c) Convergence curve for F5, (d) Convergence curve for F6, obtained by 5 SMA versions for benchmark functions (500 iterations).
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solution.
Overall, the figure shows that all SMA variants, including AOSMA, 

efficiently solve the benchmark problem, achieving fast convergence 
and almost identical final fitness values. AOSMA performs comparably 
to the top variants, confirming its effectiveness and indicating that this 
test function does not strongly distinguish performance differences 
among the SMA methods.

In Fig. 2(d), most SMA variants show a steep decline from high initial 
fitness values to significantly lower ones within the first 30–70 itera
tions, indicating that they quickly move away from inferior starting 

points and identify promising regions early in the search. Each curve 
corresponds to a specific SMA variant. Some variants achieve low fitness 
values rapidly and then level off, while others progress more gradually. 
Tent SMA, Sinusoidal SMA, and Sine SMA (red, yellow, and dark blue) 
exhibit rapid convergence followed by early stagnation, indicating 
intense short-term exploitation but limited long-term improvement. In 
contrast, Iterative SMA and Circle SMA exhibit similar convergence 
patterns but plateau at a later stage, reflecting a more moderate 
exploratory behavior.

Fig. 4-a presents the boxplot comparison of the fitness values derived 

Fig. 8. Performance of the proposed AOSMA compared with the other four SMA versions [For F7-F11]. (a) Convergence curve for F7, (b) Convergence curve for F8, 
(c) Convergence curve for F9, (d) Convergence curve for F10, (e) Convergence curve for F11, obtained by 5 SMA versions for benchmark functions (500 iterations).
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from eight distinct optimization techniques applied to the benchmark 
function F1. The y-axis shows the relevant fitness values, while the x- 
axis displays the algorithms: Sinusoidal SMA, Circle SMA, Singer SMA, 
Tent SMA, Logistic SMA, Sine SMA, Iterative SMA, and AOSMA. The 
graph clearly shows that the majority of algorithms perform well in 
optimization, showing very low or almost zero fitness values. In contrast 
to the others, the Circle SMA exhibits a noticeably higher spread and 
median value, indicating either worse performance or greater unpre
dictability. The AOSMA algorithm performs competitively and steadily 
among the compared approaches, as seen by its continually low fitness 
values.

Fig. 4-b presents a boxplot evaluating the effectiveness of eight 
optimization methods according to their fitness values using the 
benchmark F2. The algorithms, Sinusoidal SMA, Circle SMA, Singer 
SMA, Tent SMA, Logistic SMA, Sine SMA, Iterative SMA, and AOSMA, 
are represented on the x-axis, and the appropriate fitness values are 
displayed on the y-axis. The plot indicates effective optimization, as the 
majority of methods obtain very low fitness values. With a noticeably 
higher median and interquartile range, the Singer SMA stands out, 
indicating worse performance and more variability. Algorithms with 
minimum variance and lower fitness results, such as AOSMA and Tent 
SMA, on the other hand, exhibit excellent optimization capability and 
great stability.

Fig. 4-c depicts a boxplot of fitness values for eight optimization 
techniques, allowing a comparative examination of their performance 
for the F3 benchmark function. According to the statistics, Singer SMA 
generates a median fitness value that is significantly larger and has a 
broader range, which suggests less efficient optimization and greater 
performance variability. On the other hand, the remaining methods 
consistently obtain low fitness values, indicating higher optimization 

performance and robustness, especially AOSMA, Iterative SMA, and 
Tent SMA. This demonstrates that, out of the algorithms compared, 
AOSMA is among the most dependable and efficient. Fig. 4-d highlights 
the performance of eight optimization methods on the F4 benchmark 
function by comparing them in a boxplot according to their fitness 
values. With a noticeably lower (more negative) fitness value, the Lo
gistic SMA sticks out from the plot, suggesting inadequate performance 
in this instance. The other methods, on the other hand, consistently 
maintain fitness values near zero, indicating superior optimization re
sults. AOSMA and Iterative SMA are dependable options for addressing 
the optimization problem depicted because of their robust and constant 
performance.

Fig. 5 presents the fitness scores for the eight considered algorithms, 
for the benchmarks F5, F6, F7, and F8. Also, Fig. 6 presents the fitness 
scores for the benchmarks F9, F10, F11, F12, and F13. The algorithms 
are shown on the x-axis, and the fitness values, which reveal how well 
each algorithm optimizes, are displayed on the y-axis. The data shows 
that the algorithms differ noticeably from one another. With the lowest 
median fitness values, Circle SMA and Sine SMA appear to perform 
better in this situation. On the other hand, Singer SMA and AOSMA 
perform comparatively poorly on the examined task, as evidenced by 
their larger median fitness scores. The variations in the boxplots show 
how the algorithms differ in terms of robustness and stability.

For further evaluation, the proposed AOSMA was compared to four 
other SMA versions. Figs. 7 and 8 present the results of the proposed 
AOSMA compared to the other four SMA versions for benchmark func
tions of F3-F11. Every algorithm exhibits a distinct decreasing trend, 
indicating that as the number of iterations increases, the quality of the 
solutions improves. The magenta (SMA-AGDE) and green (QCMSMA) 
curves exhibit remarkably rapid convergence, achieving very low fitness 
values early on and maintaining consistent gains throughout. 
Throughout, the blue (QJESMA) curve shows a steady decline that 
smoothly converges to lower fitness values. As iterations progress, the 
black (AOSMA) and red (RCLSMOA) curves exhibit stable convergence 
behavior, rapidly declining from their initial higher values before sta
bilizing. The convergence curves of five algorithms over 500 iterations 
on the Rosenbrock function (f4) are displayed in this picture.

Every algorithm begins with extremely high fitness values, ranging 
from 10 to 8, and drops off quickly in the initial repetitions. Within the 
first 50 iterations, RCLSMAOA, OJESMA, and QCMSMA show rapid 
convergence, achieving values that are nearly zero. SMA-AGDE im
proves progressively over iterations and converges more slowly. AOSMA 
exhibits competitive performance, with a smooth transition to near- 
optimal values and a distinct, steady decline. The Rosenbrock function 
is handled well by all approaches overall, albeit there are variations in 

Fig. 9. Ablation study of four SMA versions at functions (a) F2 and (b) F1.

Table 5 
Average wall-clock time per run and per iteration for AOSMA and SMA variants 
at sphere function F1, 30D, max iteration = 500.

Algorithm Average runtime per run (s) Average runtime per iteration (s)

Baseline SMA 0.4446 0.000889
AOSMA 0.6730 0.001346
Logistic SMA 0.4526 0.000905
Tent SMA 0.4576 0.000915
Sine SMA 0.6555 0.001311
Sinusoidal SMA 0.4628 0.000926
Singer SMA 0.4565 0.000913
Circle SMA 0.4530 0.000906
Mouse SMA 0.4481 0.000896
Iterative SMA 0.6288 0.001258
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stability and convergence rate. OJESMA, QCMSMA, and RCLSMAOA all 
perform extremely steadily and swiftly approach near-optimal values. 
SMA-AGDE has a greater fitness trajectory over the course of the itera
tions and converges significantly more slowly. AOSMA exhibits a bal
ance: it performs competitively and converges more smoothly than 
SMA-AGDE; however, it lags somewhat behind RCLSMAOA and 
QCMSMA in terms of final precision.

AOSMA’s parameters were selected to maintain a balanced search 
behavior while ensuring practical implementation and reproducibility, 
using standard SMA defaults to minimize manual tuning. Uniform set
tings for population size, iteration count, and reinitialization probability 
produced stable performance across benchmarks. Although initial 
findings indicate that excessively large populations or frequent OBL 
activations offer limited additional benefit due to the algorithm’s 
inherent diversity mechanisms, further sensitivity studies, such as 
exploring different population sizes or OBL activation strategies, would 
provide more quantitative insight and help confirm the robustness of 
these parameter choices. Incorporating real-world optimization case 
studies would further strengthen the manuscript’s practical impact, as 
benchmark functions do not fully capture the constraints, noise, and 
interdependencies present in actual applications. Since AOSMA’s 
adaptive opposition learning and best-agent replacement strategies are 
particularly effective for complex and resource-constrained problems, 
evaluating the algorithm on tasks such as engineering design or feature 
selection would illustrate its practical performance and expand its 
applicability without altering its core framework.

AOSMA exhibits consistent performance as dimensionality grows, 
largely due to its adaptive opposition mechanism, which preserves 
population diversity, and the best-agent replacement strategy, which 
promotes faster convergence toward promising regions. In 30-dimen
sional benchmark evaluations, the algorithm consistently achieved 
competitive or superior outcomes across unimodal, multimodal, and 
composite problem classes. Its complexity scales linearly with dimen
sion, O(ND) per iteration and O(TmaxND)overall, preventing exponential 
increases in runtime or degradation in solution quality. Consequently, 
AOSMA maintains robust search efficiency in higher-dimensional spaces 
without requiring specialized parameter tuning. Future work may 
extend these findings to ultra-high-dimensional settings (e.g., D > 100) 
or real-world feature selection tasks to further assess scalability.

Furthermore, Fig. 9 presents an ablation study of four SMA versions 
at functions F1 and F2. The red curve represents the SMA baseline. The 
standard SMA begins with high fitness values and decreases gradually, 
but plateaus at a higher level than other variants, reflecting weaker 
optimization ability. The blue dashed curve represents the SMA + OBL. 
Incorporating non-adaptive OBL yields only a slight improvement over 
the baseline, with a convergence trend that nearly overlaps it, indicating 
limited effectiveness. The green dash-dotted curve represents the SMA +
replacement. This variant demonstrates the fastest and most pronounced 
improvement, quickly reaching lower fitness values and maintaining 
strong convergence, highlighting the effectiveness of the replacement 
mechanism. The black curve represents the proposed AOSMA. By inte
grating adaptive OBL with replacement, AOSMA achieves stable and 
competitive performance. Although its early progress is slower than 
SMA+ Replacement, it ultimately converges to the lowest fitness, of
fering the best balance between exploration and exploitation.

A non-parametric statistical test for comparing the performance of 
three or more algorithms (or treatments) across various problems or 
datasets is the Friedman Test, often known as Friedman’s ANOVA. In 
optimization and machine learning research, it is very typical to seek to 
determine whether one algorithm (like AOSMA) performs noticeably 
better than others. Here’s what the Friedman analysis (F1–F9 subset) 
shows: 

a) Average ranks: AOSMA achieves the lowest average rank (best 
overall), indicating it tends to perform more strongly across 
functions.

b) Friedman test statistic: Since the p-value is 0.0002 (< 0.05), the 
differences among algorithms are statistically significant. This means 
we can reject the null hypothesis (“all algorithms are equal”) and 
conclude that at least one algorithm, in this case, AOSMA, with the 
best average rank, is significantly better.

Table 5 presents the average wall-clock runtime per run and per 
iteration for the baseline SMA, its chaotic variants, and AOSMA on the 
Sphere benchmark function (30 dimensions, 30 agents, 500 iterations). 
The baseline SMA and most chaotic variants (Logistic, Tent, Sinusoidal, 
Singer, Circle, Mouse, Iterative) demonstrate relatively low runtimes, 
averaging around 0.44–0.46 s per run, with per-iteration costs on the 
order of 10⁻³ seconds. Within the chaotic variants, Sine SMA and Iter
ative SMA show slightly higher runtimes, reflecting the extra compu
tational effort introduced by their nonlinear update dynamics.

In contrast, AOSMA records a moderately higher runtime of 0.673 s 
per run (0.001346 s per iteration). This increase is anticipated since 
AOSMA incorporates opposition-based learning and adaptive exploita
tion mechanisms, which add extra computational steps per iteration. 
Nonetheless, this modest selection is offset by AOSMA’s superior opti
mization accuracy, stability, and convergence speed, as evidenced by 
the experimental results. Ultimately, the added computational cost 
represents a reasonable trade-off for achieving improved search balance 
and higher solution quality, reaffirming the effectiveness of AOSMA in 
enhancing slime mould-based optimization.

OBL increases computational overhead by effectively doubling the 
number of candidate solutions, both the original and their opposites, 
that must be evaluated and maintained. Similarly, replacement strate
gies, which determine which individuals advance to the next generation, 
introduce additional costs through comparison and selection operations. 
Although these mechanisms enhance optimization by boosting popula
tion diversity and reducing the risk of premature convergence, the extra 
computations required for generating and filtering solutions contribute 
to the overall runtime. As a result, they may be less practical for highly 
cost-sensitive optimization tasks or scenarios with limited computa
tional resources.

Two additional mechanisms-opposition-based learning, which as
sesses opposing solutions, and the replacement strategy, which swaps 
out weaker agents for stronger ones- are responsible for the extra run
time in AOSMA. Compared to the entire optimization process, these 
phases are lightweight and add a little computational burden that scales 
linearly with issue size. Importantly, the overhead is a good trade-off 
because this minor expense results in substantial gains in exploration, 
exploitation, and solution quality.

5. Conclusion and future work

This study proposed an AOSMA aimed at addressing function opti
mization challenges. However, because the suggested algorithm makes 
an adaptive decision about whether to use the OBL, it shows superior 
exploration and exploitation. In conclusion, this approach reduces the 
possibility of misguiding the exploration phase in some cases by 50 % by 
using a single random search agent instead of the SMA. Additionally, 
this method has an adaptive mechanism built in to determine when to 
utilize OBL to limit the exploration period. Lastly, the proposed tech
nique is thought to be helpful for function optimization to address 
practical engineering issues.

As a future work, we can combine with metaheuristics (e.g., PSO, DE, 
GA) to leverage strengths and overcome weaknesses (e.g., slow 
convergence or premature convergence). Additionally, including one or 
two state-of-the-art optimizers outside the SMA family, consider using 
larger benchmark sets or higher dimensionalities would better evaluate 
the proposed method’s generalization and robustness. Also, this would 
offer deeper insights into the effectiveness of the proposed approach.
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