
BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100251

A
2
B

Contents lists available at ScienceDirect
BenchCouncil Transactions on Benchmarks,

Standards and Evaluations
journal homepage: www.keaipublishing.com/en/journals/benchcouncil-transactions-on-

benchmarks-standards-and-evaluations/

Research article

Performance comparison of permissioned and permissionless blockchain by

varying workload transaction
Madhav Ajwalia a ,∗, Parth Shah b

a Chandubhai S. Patel Institute of Technology (CSPIT), Faculty of Technology & Engineering (FTE), Charotar University of Science and Technology
(CHARUSAT), Changa, Gujarat, India
b Department of Studies in Strategic Technologies, School of National Security Studies (SNSS), Central University of Gujarat, Vadodara, Gujarat, India

A R T I C L E I N F O

Keywords:
Benchmarking
Blockchain
Ethereum
Hyperledger Caliper
Hyperledger Fabric
Performance evaluation
Transaction workload

 A B S T R A C T

Blockchain technology has fueled exponential growth across various industries, including finance, supply
chain management, and healthcare, enabling greater transparency in transaction management and supporting
decentralized implementations. This paper presents a comprehensive performance analysis of permissioned
and permissionless blockchain platforms, specifically Hyperledger Fabric and Ethereum. The study evaluates
these platforms with varying transaction workloads (100 to 1000 transactions) with a consistent network. Our
objective is to measure key performance metrics such as send rate, throughput, latency, resource utilization,
and transaction success rate using established benchmarking tools and methodologies. The findings offer
valuable insights into the comparative strengths, limitations, and optimal use cases of these blockchain
platforms across different performance parameters. The results indicate that Hyperledger Fabric achieves, on
average, 3.5–4.5 times higher throughput and 10–12 times lower latency than Ethereum, while consuming
2.5–3 times less memory across tested workloads. In contrast, Ethereum demonstrates a higher send rate and
lower CPU demand in some operations. Overall, the study suggests that Hyperledger Fabric is better suited
for enterprise applications that demand high scalability and performance.
1. Introduction

The arrival of blockchain technology has reformed various sectors,
including Finance [1], Governance [2], Internet of Things (IoT) [3],
Healthcare [4], Agriculture [5], Supply chain [6], Energy sector [7],
Education [8], Public sector [9], Business and Industry [10], and
more [11,12]. This technology is used for integrity verification, privacy
and security, identity management, data management, and more [13,
14]. It introduces decentralized and transparent systems for recording
and verifying transactions. It has attracted the significant attention of
researchers from both academia and industry.

The growth of blockchain technology has been exponential, with
an increasing number of projects, applications, and users entering the
ecosystem. Recent market analyses present varying projections for the
adoption of blockchain technology. Fortune Business Insights (2023)
estimates that the global blockchain market will expand from $17.57
billion in 2023 to $469.49 billion by 2030, representing a compound
annual growth rate (CAGR) of 59.9%. In addition, Grand View Research
(2023) projects more aggressive growth, forecasting market expansion
from $17.46 billion to $1.43 trillion over the same period, indicating
a CAGR of 87.7%. Similarly, Statista (2023) anticipates substantial

∗ Corresponding author.
E-mail addresses: madhavajwalia.it@charusat.ac.in (M. Ajwalia), parth.shah@cug.ac.in (P. Shah).

growth at a CAGR of 82.8% from 2021 to 2030, with a market valuation
of $1.24 trillion by 2030.

Based on SlashData’s ‘‘State of the Developer Nation’’ report, a no-
table portion of the programming community shows strong engagement
with blockchain technology. The research found that 25% of developers
are currently learning about or building blockchain applications, while
an additional 28% have expressed interest in working with blockchain,
dApps, and related development frameworks. This data suggests that
more than half of the developer population is either actively involved in
or considering blockchain development work. Fig. 1 illustrates the per-
centage of developers learning about or working on various blockchain
platforms, reflecting their comfort with the technology across different
application areas.

Over the years, the evolution of blockchain technology has led
to four primary categories: public, private, permissioned, and permis-
sionless [16]. These classifications help differentiate how participating
nodes interact with the blockchain, achieve consensus among partici-
pants, and access or validate data (Fig. 2). Permissioned blockchains,
platforms such as Hyperledger Fabric [17], and Corda [18], require
participants to be explicitly granted access to the blockchain net-
work. These blockchains are commonly adopted in enterprise settings,
https://doi.org/10.1016/j.tbench.2025.100251
Received 2 July 2025; Received in revised form 8 December 2025; Accepted 9 Dec
vailable online 11 December 2025
772-4859/© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of
Y-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
ember 2025

 KeAi Communications Co. Ltd. This is an open access article under the CC

https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
https://orcid.org/0000-0002-4013-2193
https://orcid.org/0000-0003-4641-7787
mailto:madhavajwalia.it@charusat.ac.in
mailto:parth.shah@cug.ac.in
https://doi.org/10.1016/j.tbench.2025.100251
https://doi.org/10.1016/j.tbench.2025.100251
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2025.100251&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

M. Ajwalia and P. Shah BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100251
Fig. 1. % of developers working on or learning of the platform [15].

Fig. 2. Join, read, write, and commit access control in public, private,
permissionless, and permissioned blockchain categories [16].

offering enhanced privacy, scalability, and control over network gover-
nance [19]. In contrast, permissionless blockchains, platforms such as
Bitcoin [20] and Ethereum [21], allow anyone to join the blockchain
network, participate in transaction validation, and access transaction
data.

This difference between permissioned and permissionless
blockchains concerns to both public and private networks. Permis-
sionless blockchains permit any member to play the role of validator
without constraints, but permissioned blockchains limit this role to
known and trusted entities. This dissimilarity substantially affects
the performance, security model, and suitability of the network for
several applications [22]. Combining public access with authorized
involvement in consensus to strike a balance between openness, per-
formance, and control. Some blockchain systems may also show hybrid
features [23].

Public blockchains are permissionless in nature, providing unre-
stricted access, and any participant can join the network, authenticate
transactions, and observe the ledger. Such systems are inherently per-
missionless because no prior permission is needed to join or participate.
Well-known examples include Bitcoin and Ethereum, which use consen-
sus protocols such as Proof of Work (PoW) or Proof of Stake (PoS) to
ensure security and trust within an entirely open system. While public
and permissionless blockchains offer high degrees of transparency and
decentralization [24], they typically suffer from limitations in scalabil-
ity, transaction rates, and energy efficiency as a result of their open and
wide participation model [14].

Private blockchains are designed for limited access and are usually
controlled by one organization or a consortium. Such networks are
naturally permissioned, i.e., only approved participants can read, write,
or authenticate transactions. Private blockchains provide more control,
quicker transaction processing, better privacy, and are thus increasingly
2
used in enterprise applications like supply chain management, finance,
and health care [25,26]. Hyperledger Fabric is a very commonly used
example of a private, permissioned blockchain that supports modular
architecture, configurable consensus protocols, and fine-grained access
control mechanisms [27].

Understanding these various types of blockchain architectures is es-
sential for determining their suitability to specific use cases, when per-
formance, security, and scalability vary per the use case. By analyzing
their behavior under varying transactional loads, this study explores the
performance of different blockchain architectures. This highlights key
architectural design trade-offs and their impact on system performance
and efficiency in real-world scenarios.

With the rapid expansion of blockchain use in all sectors, there is an
increasing demand for insights into the performance trade-offs for per-
missioned and permissionless platforms, especially performance under
realistic workloads. Although earlier studies have noted architectural
and functional differences, a gap remains in quantitative performance
comparisons under controlled experimental setups. This research ad-
dresses that gap by evaluating and comparing the performance of
Hyperledger Fabric and Ethereum under varying transaction workloads
while maintaining a constant network size.

Furthermore, the rapid growth of the blockchain market empha-
sizes the need for comprehensive performance evaluations to mea-
sure the suitability of blockchain platforms for specific use cases [28,
29]. Understanding the performance characteristics of these platforms
is crucial for stakeholders, as it facilitates informed decision-making
and fosters the continued advancement and adoption of blockchain
technology across various domains. Bitcoin, the initial application of
the blockchain, can be assessed through four performance parame-
ters: mining reward, total forks, transaction throughput, and network
latency [30]. Due to the potential for integration with blockchain,
people may consider its application beyond cryptocurrency. However,
efficiency, stability, scalability, and performance should not be over-
looked [31]. [32] delves into various performance modeling techniques
used to analyze blockchains. These techniques are categorized into
analytical modeling, empirical analysis, simulation, and benchmarking.
In this work, a benchmarking method is employed to evaluate the
performance of permissionless and permissioned types of blockchain
using the Hyperledger Caliper tool [33].

If a blockchain network experiences persistent high load, such as
high transaction volume or complex smart contract executions, it may
begin to experience performance degradation [34]. This degradation
can lead to lower system availability, where nodes become slower
to respond or fail to respond due to excessive resource consumption.
Resource exhaustion, such as CPU and memory overload, can cause
node failures or instability, thereby affecting the overall reliability of
the blockchain network. Overloaded systems also face node crashes
or synchronization issues, which can compromise data consistency
across the blockchain network. These issues also limit scalability, as
the blockchain network struggles to maintain performance to handle
growing demand. These consequences highlight the importance of per-
formance evaluation, particularly when comparing permissioned and
permissionless models under dynamic load conditions.

In preview of our findings, the comparative evaluation reveals clear
distinctions between the two platforms. Hyperledger Fabric demon-
strated consistently higher throughput and lower latency under con-
trolled workloads, along with greater efficiency in resource utilization.
Ethereum, by contrast, sustained higher transaction submission rates
but at the cost of increased resource consumption. Fabric’s resource effi-
ciency and responsiveness make it suitable for permissioned, enterprise-
grade use cases such as timebanking applications, whereas Ethereum
reflects the trade-offs inherent in public, permissionless environments.
These findings help in selecting platforms for real-world deployments.

This paper contributes a structured comparative study of permis-
sioned (Hyperledger Fabric) and permissionless (Ethereum)
blockchains under systematically varied transaction workloads. It

M. Ajwalia and P. Shah

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100251
benchmarks multiple transaction types (open, query, transfer) and
examines a broader set of performance indicators beyond conventional
throughput and latency, including send rate, transaction success rate,
and resource utilization. The experimental design employs standard
Dockerized deployments to ensure reproducibility and to isolate the
impact of workload intensity on system behavior. The findings provide
empirical evidence of the fundamental trade-offs between permis-
sioned and permissionless models, demonstrating Fabric’s strengths
in throughput, latency, and efficiency, while Ethereum demonstrates
higher submission rates, offering practical insights for blockchain plat-
form selection. Through this empirical investigation, this study ex-
amines where the performance of permissioned and permissionless
blockchain networks excels and limits.

In the subsequent sections of this paper, we examine the existing
work, discuss the methodology employed for performance evaluation,
present and analyze our findings, and outline paths for future research
in the dynamic landscape of blockchain technology.

2. Literature survey

Many recent research works have identified the performance issue
of blockchain-based systems as a promising research topic. They have
investigated the performance using a practical and theoretical method
that shows potential developments in the field. This section discusses
the performance research of various application areas related to supply
chain [35,36], network service federation [37], cryptocurrency [38],
finance [39], trading [40], e-voting [41], IoT [42], and mining [43].

‘‘LogisticChain’’ [35] introduces a proof of concept model that
leverages the Hyperledger Fabric blockchain infrastructure to model
shipping logistics workflows. System performance assessment involves
manipulating various parameters including client volume, simultaneous
transaction processing, and per-second transaction frequency, while
monitoring metrics such as latency, send rate, and throughput. Read
operations exhibit the lowest latency, while Update operations show
the highest latency due to the complex computations and validations in-
volved. The LogisticChain implementation reveals lower latency when
utilizing a constant-rate controller compared to a linear-rate controller.

The work [36] presents a prototype of BloodChain based on the pri-
vate blockchain Hyperledger Fabric. It evaluates the performance and
effectiveness of application claims enhanced security, transparency,
and traceability. Execution observes requests per second and latency
for create, request, and update functions under different test loads. The
system can handle a large number of requests and maintain a relatively
stable performance. However, there are some fluctuations in latency,
mainly when the system is under a high load, from 1000 to 10,000
transactions.

The research work [37] compares Proof of Work (PoW), Proof of Au-
thority (PoA), Practical Byzantine Fault Tolerant (PBFT), and Proof of
Stake (PoS) by analyzing their performance on platforms like Ethereum,
Tendermint, and Cosmos in the context of Network Service Federation
(NSF). It emphasizes the negotiation and implementation aspects of
multi-cloud federation, offering insights into the appropriateness of
each consensus mechanism for NSF applications. The research evaluates
latency, send rate, and throughput to assess the effectiveness of each
consensus method. It investigates the performance of Blockchain hosts
considering CPU, memory, disk, and network usage. PoA and PBFT
mechanisms show lower latency and higher throughput, making them
more suitable for NSF applications.

The paper [38] introduces a reputation-based blockchain protocol
in Bitcoin networks to assign a controler node for each cluster, which
propagates transactions to other clusters. The protocol, called Master
Node Based Clustering (MNBC), aims to reduce the propagation delay
of transactions by grouping nodes based on their physical internet prox-
imity. The study evaluates the proposed methods through simulation
experiments and shows that they can optimize the transaction propa-
gation delay compared to the Bitcoin protocol. Nevertheless, MNBC’s
3
efficiency declined when the proportion of compromised nodes rose
from 5% to 30%.

[39] Evaluate the performance of the ConsenSys Quorum blockchain
platform, permissioned blockchain designed for financial applications.
This study aims to analyze the throughput, latency, and scalability.
It summarizes that Istanbul Byzantine fault tolerant (IBFT) represents
the best choice for Quorum in financial applications. The paper also
discusses the challenges faced by permissioned blockchains in achiev-
ing high performance and the potential solutions to overcome these
challenges.

The performance of the livestock application based on the Hy-
perledger Iroha blockchain framework is evaluated [40]. The study
assesses the framework based on three key parameters: total requests
per second (RPS), response times in milliseconds over time, and the
number of users in the network over time. The findings suggest that
Hyperledger Iroha can effectively support at least 200 participants
without errors in the network. It can handle up to 40.6 requests per
second, and the response times are rapid, typically less than a second.

[41] develops a private blockchain infrastructure designed for demo-
cratic voting systems, utilizing blockchain network for data storage
and processing operations. Smart contracts are implemented to handle
transaction execution within the system. The authors conduct a com-
parative performance evaluation examining two widely-used Ethereum
client implementations, Geth and Parity, analyzing their capabilities
across throughput, latency, and scalability parameters. On average,
transactions are 91% faster in the Parity client compared to the Geth
client.

[42] compares the performance of their solution with existing access
management solutions in IoT. The paper conducts realistic experiments
to evaluate the performance of the proposed system in terms of latency,
throughput, and scalability. It is observed that, in the case of only single
management hub, the proposed solution achieves better performance
than the optimized centralized IoT systems. The proposed implementa-
tion offers significant scalable advantages over traditional scenarios in
the case of multiple management hubs.

‘‘MobiChain’’ [43] experiments were performed on a mobile node.
It evaluates the performance of the proposed model in terms of com-
putation time, energy consumption, and memory utilization for chain
verification. It observes that the chain verification process is executed
faster and consumes less energy when transactions are grouped in
a block. Moreover, the execution time reduces insignificantly as the
number of threads increases.

The reviewed literature (Table 1) shows that performance evalua-
tion across blockchain applications is essential. Performance evaluation
trend shifts from theoretical analysis to practical implementation stud-
ies. That emphasis on domain-specific performance metrics and real-
world usability factors. Scalability remains the primary challenge across
all application domain. Energy efficiency and resource constraints are
concerns, specifically for mobile and IoT applications. However, most
studies focus on individual platforms rather than comprehensive cross-
architecture comparisons. This study addresses these limitations by
systematically comparing the Hyperledger Fabric and Ethereum plat-
forms under varying workload scenarios, offering valuable insights for
informed deployment decisions in both enterprise and public contexts.

3. Methodology

This study includes configuring Hyperledger Fabric as a permis-
sioned blockchain network and Ethereum as a permissionless blockchain
network. It implements chaincode and smart contracts and runs several
predefined test scenarios with the benchmarking tool Hyperledger
Caliper. That measuring various performance metrics and analyzing the
results. To evaluate performance, the tool runs a comprehensive set
of test scenarios that include a variety of workloads, transactions, and
network sizes. For the study, workload transaction per second (TPS) is
systematically varied from 100 to 1000 while keeping the network size
constant.

M. Ajwalia and P. Shah BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100251
Table 1
Comparison of performance evaluation studies in blockchain applications.
 Paper Study Focus Network/Plat-

form
Consensus
Mechanism

Tools Used Key Performance
Metrics

Key Observations Limitations

 [35] Analyze performance of
a blockchain-based
system for maritime
logistics

Hyperledger
Fabric

Raft Hyperledger
Caliper

Throughput, latency,
scalability, transaction
processing speed

Lower latency with
fixed-rate controllers than
linear-rate controllers

Simulation-only results;
lacks of real-world
deployment data;
scalability and
interoperability issues

 [36] Scalability performance
of permissioned
network in Healthcare

Hyperledger
Fabric

Not Mentioned Hyperledger
Caliper

Data integrity,
traceability, system
availability, user
adoption rates

Stable performance under
high load; fluctuations in
latency occur, particularly
under high load from 1000
to 10,000 transactions

Conceptual; lacks full
metrics and
implementation; privacy
compliance concerns

 [37] Evaluation of
blockchain consensus
mechanisms for
federated network
services

Ethereum,
Tendermint,
Cosmos

Proof of Work,
Proof of
Authority, PBFT,
Proof of Stake

Not Mentioned Consensus latency,
energy use, fault
tolerance, network
overhead

PoW and PBFT show lower
latency and higher
throughput making them
more suitable for NSF
applications

Limited scalability
analysis; limited
consensus algorithms
tested

 [38] Investigate the
performance and
security of a
reputation-based
blockchain in
cryptocurrency network

Bitcoin network Rapid-
Chain/MNBC

Bitcoin
simulator, Metis
graph partition
toolkit

Security metrics,
reputation scoring,
network resilience,
transaction speed

Proposed Master Node based
Clustering (MNBC) protocol
offers improvement in
information propagation
delay compared to Bitcoin
protocol. However, MNBC
performance decreased as
malicious nodes increased
from 5% to 30%

Simulation focus;
Bitcoin-specific;
centralization and
vulnerability concerns

 [39] Performance evaluation
of Permission
blockchain in Financial
Services

ConsenSys
Quorum

Raft, Clique
Proof of
Authority,
Istanbul BFT

Hyperledger
Caliper

Transaction throughput,
privacy, compliance,
cost-efficiency

Istanbul Byzantine
fault-tolerant (IBFT)
represents the best choice
for Quorum in financial
applications

Single-platform focus;
lacks cross-platform
comparison

 [40] Evaluate performance
of permissioned
network in livestock
management and
trading platform

Hyperledger
Iroha

Byzantine Fault
Tolerant

Not Mentioned Transaction processing,
data provenance,
system reliability,
adoption

Supports 200+ participants,
40.6 tx/sec throughput

Small-scale testing only;
lacks stress/fault
tolerance

 [41] Benchmark public
blockchain in E-Voting
scenario

Ethereum (Geth
and Parity)

Proof of Work Not Mentioned Vote speed, system
security, voter privacy,
electoral integrity

Parity is 91% faster than
Geth for transactions

Ethereum-only; limited
security analysis; privacy
vs. transparency
trade-offs

 [42] Analyze performance of
Blockchain-based access
control for IoT devices

Ethereum Not Clear CoapBench Device auth speed,
scalability, energy
efficiency

Scalable advantage in
multi-Hub scenario;
single-Hub underperforms
centralized systems

Private blockchain only;
no constrained device
tests; energy/resource
limits

 [43] Performance analysis of
Blockchain in Mobile
device for mining

Bitcoin network Proof of Work VideoOptimizer
program

Battery consumption,
processing efficiency,
network usage, user
experience

Grouped transactions
improve speed and reduce
energy use

Energy consumption and
bandwidth not fully
evaluated; mobile device
variability

3.1. Experimental design description

The experimental design follows a structured workflow where busi-
ness logic is developed independently for each platform before per-
formance evaluation. The process consists of four main phases: devel-
opment of business logic, configuration for benchmarking, benchmark
execution and measurement, and result analysis.

Development of Business Logic: Application-level business logic
was developed independently for each platform. For Hyperledger Fab-
ric, chaincode was implemented in the Node.js, while for Ethereum,
smart contracts were written in Solidity. These implementations cov-
ered three core functions (Open, Query, Transfer) and were validated
through unit testing prior to benchmarking. The code was deployed
on private test networks for each platform, each hosted in an iso-
lated Dockerized environment to ensure fairness and control across
experiments.

Configuration for Benchmarking: Hyperledger Caliper served as
the benchmarking framework. It was configured using an adapter
and network files referencing the deployed business logic, specifying
workload parameters, transaction types, and network details. Caliper
4
does not develop or execute code internally; instead, it interfaces with
predeployed smart contracts or chaincode via standardized blockchain
APIs. This ensures that benchmarking reflects actual system behavior
rather than simulated execution.

Benchmark Execution and Measurement: Once configured, Caliper
initiated benchmarking by generating workloads against the deployed
networks. Each experimental run followed a systematic sequence: ini-
tially, blockchain networks are deployed using validated business logic;
Caliper then connects to each network via standardized APIs. Once
connected, workload modules initiate transaction patterns defined by
experimental parameters, prompting the execution of business logic on
the networks. Throughout this process, Caliper captures transaction-
level metrics through analysis of API interactions and timestamps.
Parallel system-level monitoring captures resource utilization data, pro-
viding a comprehensive view of system performance. Each scenario was
executed three times, and Caliper aggregates and stores all results for
statistical and comparative analysis. Scalability was assessed by varying
transaction rates across the workload range, while keeping the network
size fixed to isolate workload effects.

Result Analysis and Reproducibility: Caliper outputs structured
JSON and performance reports, which were analyzed for performance

M. Ajwalia and P. Shah BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100251
Table 2
Test environment for performance evaluation of blockchain networks.
 Component Platform/Network Version
 Benchmarking Platform Hyperledger Caliper v0.5.0
 Blockchain Network Ethereum 1.0
 Hyperledger Fabric 2.5.0
 Business Logic Smart Contract with Solidity 0.8.23
 Chaincode with Node.js 16.13.1,
 12.22.9

trends and platform comparisons. Control variables, including hard-
ware specifications, software versions, Docker container settings, and
environment parameters, remained constant across all experiments
to ensure comparability. Detailed documentation of all configura-
tion parameters, software versions, and experimental steps enables
reproducibility.

3.2. Experimental setup

Table 2 shows the test environment prepared for this performance
study. Hyperledger Caliper v0.4.2 was used as a benchmarking tool.
Chaincode, smart contract development, and execution were carried
out using the programming languages Go, Solidity, and JavaScript.
Visual Studio Code (VSCode) worked as a development environment
for code creation and debugging. For the CPU configuration, we used
an Intel Core i5-1135G7 CPU operating at 2.40 GHz for the Ubuntu
v22.04.3 LTS system.

We used Hyperledger Fabric v2.5.0 and Ethereum as permissioned
and permissionless networks, respectively, and deployed them with
Docker engine versions 20.10.22 and 24.0.7. We used Docker Com-
pose versions 2.15.1 and 1.29.2 to manage containerized blockchain
environments.

3.3. Benchmarking tool

Hyperledger Caliper is a benchmarking tool designed explicitly to
evaluate the performance of blockchain networks. It provides a frame-
work for executing different scenarios, measuring various performance
metrics, and analyzing the results. Caliper’s general framework [44] is
used to run benchmarks against various blockchain frameworks. That
generates a workload for a particular system under test (SUT) and keeps
track of how it responds all the time. Finally, a report will be produced
based on the observed SUT responses. This simplistic view is depicted
in Fig. 3.

Caliper needs many inputs to execute a benchmark, regardless of
the selected SUT. The following subsets provide a quick summary of
these inputs.

• Benchmark configuration file: This file specifies the benchmark-
ing process’s parameters, including the blockchain platform, num-
ber of participating nodes, consensus algorithms, and other test-
specific parameters.

• Network configuration file: This file is dedicated to the blockchain
network setup and contains information about network nodes,
their addresses, and other relevant network-related details.

• Workload modules: It is the brain of the benchmark. It customizes
the benchmarking workload, allowing users to tailor test sce-
narios to their specific use cases and evaluate the blockchain
platform’s performance under realistic conditions.

• Benchmark artifacts: Artifact or result generated by the bench-
marking process, encapsulating key performance metrics, trans-
action details, and other relevant data collected during the ex-
periment.
5
Fig. 3. Architecture of Hyperledger Caliper [44].

• Caliper core: This central component is responsible for the work-
load module and orchestrating the benchmarking process. It in-
cludes the core logic for test execution, result aggregation, and
communication with blockchain networks.

• Benchmark Process:
- Initialize the Caliper core, load the specified workload module,
and connect to the target blockchain network using the provided
configuration.

- Caliper generates and submits transactions to the blockchain
network based on the workload module.

- The network monitor records relevant metrics, and the result
writers store the collected data for later analysis.

- The Caliper produces detailed reports and analysis, allowing users
to evaluate the performance of the tested blockchain platform.

Performance metrics such as send rate, throughput, latency, re-
source utilization, and transaction success rates can be measured and
analyzed. These metrics assess the blockchain network’s scalability,
efficiency, and reliability. Many research articles present theoretical
insights, but may lack empirical evidence or real-world case studies to
support their findings.

3.4. Parameter selection rationale

In the context of performance evaluation for blockchain networks,
we used several key metrics to assess the network’s efficiency and effec-
tiveness. The performance metrics in this study were carefully selected
to align with both prior blockchain performance evaluation and bench-
marking standards and the specific objectives of this research. Our
chosen metrics align with established performance modeling techniques
categorized into analytical modeling, empirical analysis, simulation,
and benchmarking approaches [32]. Previous systematic surveys [28,
29,45–47] consistently identify throughput, latency, and resource uti-
lization as the core indicators of blockchain performance, as they
directly reflect scalability, efficiency, and user experience. [28] iden-
tifies throughput, latency, and resource efficiency as the most critical
indicators of blockchain usability, while [29] emphasizes the need
to capture both user-perceived and system-level performance charac-
teristics. In parallel, [45] classifies throughput, latency, and resource
consumption as the fundamental evaluation criteria applied across
multiple approaches, and [46] highlights the necessity of analyzing
consensus through transaction latency and success rate. [47] reinforces
this view, noting that among the various metrics, send rate, throughput,

M. Ajwalia and P. Shah BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100251
Table 3
Symbolic definitions for blockchain performance
metrics.
 Symbol Meaning
 𝑇𝑥 Transactions
 𝑇𝑥𝑝 Successfully processed transactions
 𝑇𝑡 Transaction processing duration
 𝑇init Transaction initiation time
 𝑇conf Transaction confirmation time
 𝑅𝑢 Actual resource usage
 𝑅total Total available resources

latency, CPU utilization, memory usage, energy efficiency, and security
are consistently highlighted as the most important and widely adopted
empirical performance evaluation parameters for blockchain systems.

Other vital parameters, energy efficiency and security metrics, were
excluded from this baseline study due to scope constraints. Energy
efficiency evaluation requires specialized power measurement infras-
tructure and extended observation periods that would significantly
complicate the controlled experimental design. Security assessment re-
quires separate methodologies, including penetration testing and cryp-
tographic analysis, representing a distinct research domain beyond the
performance benchmarking scope. This study establishes foundational
performance baselines that inform subsequent specialized energy and
security evaluations.

3.5. Performance parameters

These metrics collectively address usability, adoption, and sustain-
ability of blockchain technologies and are therefore central to any
comprehensive performance evaluation. These metrics provide a solid
and comprehensive foundation for assessing the performance trade-offs
between permissioned and permissionless blockchain platforms across
different workload scenarios. Their combined result also proves the net-
work’s scalability, efficiency, and practical deployment considerations.
Different blockchain networks may prioritize these metrics over others
based on their use cases and requirements. Table 3 shows the meaning
of the symbols utilized in the definitions of the blockchain performance
metrics.

Send Rate: That represents the number of transactions sent in the
network by the participant node per unit of time. It measures the rate
at which transactions are submitted to the blockchain network.

Send Rate = Total number of transactions sent
Time duration =

∑

𝑇𝑥
𝑇𝑡

(1)

Throughput: It measures the processing capacity of the blockchain
network, i.e., the number of transactions successfully processed per unit
of time. It reflects the network’s ability to handle a certain volume of
transactions within a given timeframe.

Throughput =
Total number of transactions successfully processed

Total time period

=
∑

𝑇𝑥𝑝
∑

𝑇𝑡
(2)

Latency: It refers to the time delay between initiating a transaction
and its final confirmation or inclusion in the blockchain network. It
measures the time taken for transactions to be propagated, validated,
and included in a blockchain.
Latency = Time taken for transaction confirmation

− Time of transaction initiation (3)

= 𝑇conf − 𝑇init

6
Success Rate: It indicates the proportion of transactions or opera-
tions that are executed successfully without errors or failures.

Success Rate = Total number of transactions successfully processed
Total number of transactions

=
∑

𝑇𝑥𝑝
∑

𝑇𝑥

(4)

Resource Utilization: Resource utilization assesses the efficiency
of the blockchain network’s resources, such as computing power and
memory usage, in processing and validating transactions. It measures
how effectively the network utilizes its resources to maintain its oper-
ation.

Resource Utilization =
Actual resource usage
Total available resources =

𝑅𝑢
𝑅total

(5)

3.6. Benchmarking operations

In the context of performance evaluation, the ‘open’,‘query’, and
‘transfer’ functions are essential tasks carried out during benchmarking
scenarios to evaluate blockchain network performance [48]. Every
function has a specific role: ‘open’ initializes and sets up the blockchain
network, ‘query’ collects data from the network, and ‘transfer’ carries
out transactions to move assets or information. By incorporating these
functions into benchmarking scenarios, Caliper allows for the mea-
surement and analysis of various performance metrics. This supports a
thorough evaluation of the blockchain network’s efficiency, scalability,
and reliability across varying workloads.

• Open function: The open function sets the blockchain network
up for benchmarking by initializing it. This could involve tasks
such as setting up or creating accounts or participants, deploying
smart contracts, configuring network parameters, loading initial
data onto the blockchain, and so forth. The function initializes
the starting state of the blockchain network before running any
benchmark transactions.

• Query Function: The query function fetches data from the
blockchain network. This could involve checking transaction
records, smart contract status, account balances, or other relevant
information stored on the blockchain. Evaluating the effectiveness
of data retrieval systems and the responsiveness of the blockchain
network to read queries depends on query operations.

• Transfer Function: Transfer function is essential for the transfer of
value or assets in the blockchain network. It consists of submitting
transactions into the network to transfer tokens, assets, or data
between smart contracts or accounts. Transfer operations are
essential for assessing transaction-processing capacity.

With these functions, Caliper enables users to simulate real-world
scenarios by benchmarking and evaluating their performance under
various workloads and conditions across various blockchain networks.

3.7. Platform selection rationale

Various surveys and comparative analyses highlight Ethereum and
Hyperledger Fabric as leading examples of permissionless and per-
missioned blockchains, respectively, due to their consensus algorithms
and performance capabilities. These two systems are the most widely
adopted and documented in both academic research and industry de-
ployments, making them ideal for comparative studies.

Examples of public permissionless blockchains include Bitcoin,
Ethereum, Litecoin, Cardano, and Polkadot, all of which enable open
participation. By contrast, permissioned blockchains such as Hyper-
ledger Fabric, R3 Corda, Quorum, Ripple, and IBM Blockchain empha-
size controlled access, enhanced privacy, and enterprise-grade function-
ality. Many permissionless platforms, including Binance Smart Chain

M. Ajwalia and P. Shah BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100251
(BSC), Polygon, Avalanche, Fantom, and Tron, extend Ethereum-like
designs, leveraging the Ethereum Virtual Machine (EVM) or Ethereum-
inspired smart contracts while maintaining public participation. Sim-
ilarly, permissioned platforms like Quorum, Corda, Hyperledger Saw-
tooth, and IBM Blockchain adopt Hyperledger Fabric’s modular,
privacy-oriented, and enterprise-driven design principles. In addition,
several leading platforms, including Ethereum 2.0, Cardano, Polkadot,
Tezos, and Algorand, are transitioning toward or have already adopted
PoS. Research [32] focused on performance modeling of a public per-
missionless blockchain. It suggests that, PoW and PoS are widely used
and the most popular consensus algorithms in this category. Although
Algorand has emerged as a promising alternative, Ethereum represents
this class majorly. A detailed study [49] evaluates the performance of
consensus algorithms and blockchain platforms using twelve assess-
ment indexes. It also discusses eight common blockchain platforms,
including Bitcoin, Ethereum, Hyperledger Fabric, Quorum, Ripple,
Corda, EOS, and IOTA, analyzed by these indexes to highlight their
distinct strengths. Comparative analyses of permissioned blockchain,
such as Cosmos, Hyperledger Fabric, Quorum, and XRPL, demon-
strate Fabric’s superiority in consensus, smart contracts, custom tokens,
privacy, latency, and throughput, despite limitations in interoperabil-
ity [50]. Researchers [51] provide a comparative study of permissioned
frameworks with regard to the community activities, performance, scal-
ability, privacy and adoption criteria. Study shows fabric is promising.
In the area of blockchain cloud integration, while providers such as
AWS and Google Cloud offer Blockchain-as-a-Service (BaaS), Fabric
remains the preferred choice for private deployments [52]. Survey [53]
investigated 12 most popular blockchain platforms and elaborated six
platforms that are widely applied in finance. This study observes that
the proportion of companies using Ethereum and Hyperledger Fabric
for application development is 24% and 38%, respectively, among
the top 100 companies. It demonstrates their market dominance in
financial use cases. This highlights why Ethereum and Hyperledger
Fabric are regarded as foundational benchmarks for permissionless and
permissioned blockchains, respectively, since studying them sufficiently
captures the core architectural and performance traits of each category.
Thus, focusing comparative performance studies on Ethereum and Hy-
perledger Fabric is sufficient to capture the essential dynamics of these
two prominent blockchain domains. Including additional platforms for
a performance comparison study introduces redundant comparisons, as
many permissionless or permissioned blockchains often derive from
or closely align with these core models. [49] highlights that the
optimal blockchain platform depends on the particular application and
desired performance criteria such as throughput, scalability, energy
consumption, cost, and security. So the final selection of a framework
for a specific use case is always a trade-off.

3.8. Methodological contribution

While Hyperledger Caliper serves as the underlying benchmarking
tool, this study goes beyond its default usage by proposing a structured
evaluation framework that introduces methodological innovations to
enhance both analytical depth and practical relevance. Rather than
relying solely on the tool’s default configurations, the study introduces
distinct experimental controls and performance metrics, positioning the
work beyond generic benchmarking practices (See Fig. 4).

This study intentionally employs Hyperledger Caliper to ensure
consistency and comparability with prior research. Unlike conven-
tional applications of Caliper, we extend its application through a
structured framework that incorporates systematic workload varia-
tion, multi-function benchmarking, extended performance metrics, and
standardized deployments. While the development of entirely new
benchmarking tools lies beyond the scope of this work, the framework
established here offers a reliable baseline and can serve as a founda-
tion for future research exploring more adaptive or context-specific
evaluation methodologies.
7
Fig. 4. Generic caliper vs proposed framework.

First, transaction workloads were systematically varied between 100
and 1000 TPS while maintaining a fixed network size. This design
isolates the impact of workload intensity without conflating it with
network scaling, a limitation observed in prior benchmarking studies.
Second, the research develops a 3-dimensional analysis approach exam-
ining platform performance across distinct functional operations (Open,
Query, Transfer) rather than aggregate metrics. This function-specific
methodology reveals performance characteristics that aggregate eval-
uations obscure, providing granular insights for application-specific
deployment decisions. Finally, both Ethereum and Hyperledger Fabric
are deployed in standardized Dockerized environments with equivalent
business logic implemented in smart contracts and chaincode. This en-
sures fairness, reproducibility, and guarantees that observed differences
arise from platform characteristics rather than deployment variations.

Collectively, these contributions move the study beyond a routine
use of existing tools and establish a replicable evaluation framework for
blockchain performance assessment. The approach not only strengthens
the validity of comparative analysis between permissioned and permis-
sionless systems but also provides a methodological template for future
benchmarking studies in the specific use case.

4. Result discussion

The result illustrates how Ethereum and Hyperledger Fabric (HLF)
performed when we tested different functions like ‘Open’, ‘Query’, and
‘Transfer’. For this result, the transaction load gradually increased from
100 to 1000 transactions per second (TPS) while keeping the network
size constant to see how each platform would handle the workload.

M. Ajwalia and P. Shah BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100251
Table 4
Performance results for ‘open’ function.
 TPS Send Rate (TPS) Throughput (TPS) Max Latency (s) CPU Utilization (%) Memory Usage (MB)
 Ethereum HLF Ethereum HLF Ethereum HLF Ethereum HLF Ethereum HLF
 100 100.2 121.4 31.1 120.5 22.77 1.96 1.96125 7.56750 1239.04 505.08
 200 200.4 145.9 31.1 140.0 27.50 1.96 2.16250 7.99500 1505.28 520.84
 300 300.9 150.5 31.9 149.4 28.28 1.92 0.17625 8.28125 1546.24 490.57
 400 400.8 175.2 31.2 155.7 29.76 1.99 0.23375 6.47375 1525.76 516.42
 500 501.0 154.6 31.2 148.2 30.18 1.95 0.04875 7.60125 1525.76 517.06
 600 600.2 158.8 31.9 153.2 32.89 1.97 0.45607 8.04947 1520.73 505.85
 700 700.2 167.9 31.4 155.3 34.45 2.05 0.57142 9.67462 1555.92 515.79
 800 800.3 163.8 31.5 157.4 36.10 2.22 0.79558 9.69863 1555.22 516.57
 900 900.4 157.7 31.1 159.1 38.07 2.31 0.39635 9.64107 1550.10 511.98
 1000 1000.2 162.7 31.3 160.4 39.86 2.35 0.3383 10.15398 1545.31 518.39
Fig. 5. Performance results for ‘open’ function with the varying workload from 100 to 1000.
Metrics include send rate, throughput, maximum latency, CPU utiliza-
tion, and memory usage. This work provides valuable insights into
platform activity under various transaction workloads, offering a subtle
understanding of efficiency and scalability.

As shown in Fig. 5 and Table 4, the result for the ‘open’ func-
tion, reveal the following trends: The open function highlights key
differences in how Ethereum and Hyperledger Fabric process write-
intensive workloads. Across the full workload spectrum (100–1000
TPS), Fabric consistently maintains throughput close to the incoming
send rate, achieving up to 160 TPS. In contrast, Ethereum’s throughput
is around 31 TPS irrespective of higher send rates. These numbers
reflect Ethereum’s consensus constraints that restrict how many ‘open’
transactions can be committed per unit time. Ethereum’s maximum
latency increases linearly with workload, exceeding 39 s at 1000 TPS.
This outcome is typical in a PoW-based system, where transaction
congestion occurs in the mempool when the volume of submitted trans-
actions exceeds the network’s processing capacity. Fabric, in contrast,
maintains latency within 2–3 s even at peak load, as its modular
consensus (ordering service with endorsement policies) is optimized
for rapid block finality in permissioned settings. Resource utilization
aligns with these patterns. Ethereum exhibits a steadily rising CPU
and memory usage as workload increases, reflecting the computational
burden of block validation and state updates under PoW. Fabric, while
consuming CPU and memory at lower levels, shows slightly increased
CPU usage at higher TPS as the ordering service manages more frequent
block commits. Overall, the open function analysis highlights Fabric’s
superior suitability for enterprise contexts requiring reliable throughput
and bounded latency, while Eth-ereum demonstrates the scalability
limits imposed by its permissionless consensus.
8
Fig. 6 and Table 5 illustrate several observable trends regarding the
‘query’ function, summarized as follows: The query operation demon-
strates a significantly different pattern. Here, both Ethereum and Fabric
achieve throughput nearly equal to the send rate across all workloads
up to 1000 TPS. Queries are read-only operations that do not alter
the blockchain state, meaning they bypass the heavy consensus bottle-
necks associated with write transactions. As a result, Ethereum handles
queries at near-linear scalability, achieving 1000 TPS throughput when
pushed to that workload. Fabric mirrors this performance, consistently
matching the query submission rate. Latency for queries remains neg-
ligible on both platforms, with Ethereum maintaining under 0.03 s
and Fabric slightly higher but still well under 0.1 s across all load
levels. This clear difference with the open function highlights the ar-
chitectural difference between read and write operations in blockchain.
Since queries mainly involve state lookups, consensus delays and block
validation overheads are avoided. CPU and memory utilization reflect
the lightweight nature of queries. Ethereum’s CPU consumption is
somewhat higher than Fabric’s, which aligns with its execution envi-
ronment (EVM-based contract logic and PoW validation, even for read
calls). Fabric remains comparatively more efficient, with CPU usage
below 1% and a stable memory usage across workloads. The query
analysis confirms that both platforms can scale read-heavy workloads
effectively, but Fabric achieves this with lower resource overhead.

As shown in Fig. 7 and Table 6, the behavior of the ‘transfer’ func-
tion exhibits the following trends: The transfer function presents the
most demanding workload by combining state updates with consensus
enforcement. Fabric maintains throughput above 130 TPS across all
load levels, reaching at 160 TPS, whereas Ethereum again saturates
at 38 TPS. This limit in Ethereum reflects the same architectural

M. Ajwalia and P. Shah BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100251
Table 5
Performance results for ‘query’ function.
 TPS Send Rate (TPS) Throughput (TPS) Max Latency (s) CPU Utilization (%) Memory Usage (MB)
 Ethereum HLF Ethereum HLF Ethereum HLF Ethereum HLF Ethereum HLF
 100 100.1 699.3 100.1 697.8 0.01 0.09 0.55500 0.31125 1249.28 486.28
 200 200.3 708.2 200.2 706.7 0.03 0.08 0.47875 0.42125 1361.92 491.44
 300 300.4 686.8 300.3 685.4 0.02 0.15 0.19125 0.42750 1372.16 481.57
 400 401.0 714.8 400.8 713.8 0.01 0.05 0.25125 0.22000 1341.44 503.12
 500 501.0 705.7 501.0 703.2 0.02 0.05 0.15000 0.40875 1341.44 506.56
 600 600.2 705.6 599.3 704.6 0.018 0.06 0.22 0.60485 1347.15 500.00
 700 700.2 706.5 700.0 707.2 0.019 0.08 0.234 0.79843 1346.9 494.6
 800 800.3 711.2 799.5 713.5 0.014 0.07 0.3421 0.7649 1347.1 497.31
 900 900.4 710.3 898.9 713.2 0.014 0.08 0.352 0.81362 1348.7 508.32
 1000 1000.2 711.1 999.6 708.6 0.024 0.06 0.3403 0.83039 1349.0 508.0
Fig. 6. Performance results for ‘query’ function with the varying workload from 100 to 1000.
bottlenecks seen in the open function: block gas limits and the se-
quential nature of PoW consensus. Fabric’s higher throughput results
from its efficient ordering and endorsement process. This allows for
parallelism and trust assumptions in a controlled, permissioned en-
vironment. Latency patterns further highlight this gap. Ethereum’s
maximum latency increases sharply with increasing load, from 17 s at
100 TPS to nearly 32 s at 1000 TPS. This Growth reflects the backlog
of pending transactions in the mempool during sustained load. Fabric
maintains latency under 3.5 s even at peak workloads, reinforcing
its strength in providing predictable responsiveness. Resource utiliza-
tion trends are consistent with the throughput findings. Ethereum’s
CPU usage steadily increases beyond 40% as the system struggles
with backlogged transactions and block production overhead. Mem-
ory consumption also increases, exceeding 1600 MB at the highest
workload. Fabric, in contrast, consumes minimal additional resources,
with CPU usage increasing modestly but still below 7% and memory
remaining near 540 MB. These results show Fabric’s advantage for
financial or transactional systems that need reliable settlement speed
and efficiency.

5. Conclusion and future work

This study provides a detailed performance comparison of permis-
sioned and permissionless blockchains under workloads ranging from
100 to 1000 TPS. Ethereum consistently achieves a higher send rate,
reflecting its suitability for scenarios where transaction initiation speed
9
and public participation are essential. Hyperledger Fabric offers, on av-
erage, 3.5–4.5 times higher throughput and 10–12 times lower latency
across tested functions, demonstrating its efficiency for enterprise-grade
workloads. Resource utilization further highlights the trade-offs: Fabric
consumes 2.5–3 times less memory than Ethereum but requires higher
CPU usage for some operations, such as open transactions. Ethereum,
on the other hand, often shows lower CPU demand but at the cost
of significantly higher memory consumption and reduced confirmed
throughput. Both systems scale with increasing workloads, showing
robustness across the tested range. Together, the analyses of open,
query, and transfer functions reveal consistent architectural trade-offs.
Ethereum’s permissionless design emphasizes openness and security
but sacrifices throughput and latency, limiting its suitability for high-
volume enterprise use. Hyperledger Fabric, tailored for permissioned
environments, achieves higher throughput, bounded latency, and more
efficient resource use. Queries scale well in both systems, though Fabric
remains more efficient.

The results of this study also have direct practical implications
for the planned application. Since such systems demand predictable
throughput, low latency, and efficient resource utilization to sup-
port frequent credits, debits, and balance queries, Hyperledger Fabric
emerges as the more suitable platform. Its ability to sustain consistent
performance up to 1000 TPS ensures reliability for community-scale
deployments, where transaction volumes are moderate but require high
integrity. Ethereum, while offering openness and higher transaction
submission rates, introduces latency and resource inefficiencies that

M. Ajwalia and P. Shah BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100251
Table 6
Performance results for ‘transfer’ function.
 TPS Send Rate (TPS) Throughput (TPS) Max Latency (s) CPU Utilization (%) Memory Usage (MB)
 Ethereum HLF Ethereum HLF Ethereum HLF Ethereum HLF Ethereum HLF
 100 100.2 160.4 37.6 158.5 17.41 1.94 0.78375 4.69875 1505.28 519.98
 200 200.4 173.1 36.7 165.1 22.41 1.94 1.08125 3.7875 1576.96 540.44
 300 300.4 190.5 40.7 131.9 21.52 2.49 1.80875 2.905 1587.20 514.17
 400 401.0 202.5 39.4 139.3 23.07 2.25 0.97625 1.495 1556.48 541.42
 500 501.3 200.3 38.4 139.6 24.19 2.22 0.04875 0.610 1556.48 540.46
 600 600.2 200.4 38.6 141.5 26.27 2.84 0.45607 4.71 1553.30 539.85
 700 700.2 202.5 37.9 140.3 27.16 3.05 0.57142 5.21 1555.92 540.79
 800 800.3 201.6 38.7 139.8 28.47 3.00 0.79558 5.617 1561.61 541.57
 900 900.4 203.3 38.2 139.4 30.35 3.26 0.39635 6.01 1590.00 540.98
 1000 1000.2 201.9 38.4 137.1 31.97 2.94 0.3383 6.401 1602.31 541.60
Fig. 7. Performance results for ‘transfer’ function with the varying workload from 100 to 1000.
could hinder responsiveness in a timebanking context. These insights
provide a strong foundation for selecting Fabric as the underlying
platform for the forthcoming application.

5.1. Future work

While this study evaluated blockchain performance by varying
transaction workloads under a fixed network size, future research could
extend the analysis by exploring how network size impacts system
behavior. As the number of participating nodes increases, consensus
mechanisms experience additional communication overhead, which
may affect performance differently than transaction load. These in-
vestigations may reveal performance patterns that cannot be observed
simply by adjusting the system’s workload. They can also help explain
real-life situations where the performance of platforms changes de-
pending on the number of users involved, not just the system’s overall
activity.

Given the rapid evolution of blockchain technologies, this study
may not cover every emerging enhancement or innovation in platform
design and interaction. Future work should include new consensus
protocols, updated framework versions, and wider deployment config-
urations to stay relevant. Building on these findings, we plan to adopt
Hyperledger Fabric and move toward developing and testing a real-
world application, validating the platform’s performance and usability
in a live deployment scenario.
10
CRediT authorship contribution statement

Madhav Ajwalia: Writing – review & editing, Writing – original
draft, Visualization, Validation, Software, Resources, Methodology, In-
vestigation, Data curation, Conceptualization. Parth Shah: Writing –
review & editing, Writing – original draft, Supervision.

Funding

This research received no specific grant from any funding agency in
the public, commercial, or not-for-profit sectors.

Declaration of competing interest

The authors declare that they do not have any conflict of interest.

References

[1] M. Javaid, A. Haleem, R.P. Singh, R. Suman, S. Khan, A review of blockchain
technology applications for financial services, BenchCouncil Trans. Benchmarks,
Stand. Eval. 2 (3) (2022) 100073.

[2] J. Clavin, S. Duan, H. Zhang, V.P. Janeja, K.P. Joshi, Y. Yesha, L.C. Erickson,
J.D. Li, Blockchains for government: use cases and challenges, Digit. Gov.: Res.
Pr. 1 (3) (2020) 1–21.

[3] M. Ajwalia, K. Mer, R. Bhatia, P. Shah, P. Prajapati, Security and challenges
of blockchain-based IoT use cases, in: International Conference on ICT for
Sustainable Development, Springer, 2024, pp. 91–103.

[4] S. Cihan, N. Yılmaz, A. Ozsoy, O.D. Beyan, A systematic review of the blockchain
application in healthcare research domain: toward a unified conceptual model,
Med. Biol. Eng. Comput. (2025) 1–24.

http://refhub.elsevier.com/S2772-4859(25)00064-X/sb1
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb1
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb1
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb1
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb1
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb2
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb2
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb2
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb2
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb2
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb3
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb3
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb3
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb3
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb3
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb4
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb4
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb4
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb4
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb4

M. Ajwalia and P. Shah BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100251
[5] C. Zheng, X. Peng, Z. Wang, T. Ma, J. Lu, L. Chen, L. Dong, L. Wang, X. Cui,
Z. Shen, A review on blockchain applications in operational technology for food
and agriculture critical infrastructure, Foods 14 (2) (2025) 251.

[6] N. Kumar, K. Kumar, A. Aeron, F. Verre, Blockchain technology in supply chain
management: Innovations, applications, and challenges, Telemat. Informatics
Rep. (2025) 100204.

[7] T. Sivaram, et al., Recent developments and challenges using blockchain
techniques for peer-to-peer energy trading: A review, Results Eng. (2024)
103666.

[8] X. Wang, M. Younas, Y. Jiang, M. Imran, N. Almusharraf, Transforming education
through blockchain: A systematic review of applications, projects, and challenges,
IEEE Access (2025).

[9] G. Piccardo, L. Conti, A. Martino, Blockchain technology and its potential to
benefit public services provision: A short survey, Futur. Internet 16 (8) (2024)
290.

[10] N.S. Sizan, D. Dey, M.A. Layek, M.A. Uddin, E.-N. Huh, Evaluating blockchain
platforms for iot applications in industry 5.0: A comprehensive review,
Blockchain: Res. Appl. (2025) 100276.

[11] K. Zı̄le, R. Strazdin, a, Blockchain use cases and their feasibility, Appl. Comput.
Syst. 23 (1) (2018) 12–20.

[12] D. B. Rawat, V. Chaudhary, R. Doku, Blockchain technology: Emerging appli-
cations and use cases for secure and trustworthy smart systems, J. Cybersecur.
Priv. 1 (1) (2020) 4–18.

[13] J. Yu, X. Li, Y. Guo, A secure and verifiable blockchain-based framework for
personal data validation, Computers 13 (9) (2024) 240.

[14] H. Alanzi, M. Alkhatib, Towards improving privacy and security of identity
management systems using blockchain technology: A systematic review, Appl.
Sci. 12 (23) (2022) 12415.

[15] D.N. Community, State of the developer nation Q4 2019, 2020, URL
https://www.developernation.net/resources/reports/state-of-the-developer-
nation-q4-2019/. (Accessed 11 May 2025).

[16] A.Z. Junejo, M.A. Hashmani, A.A. Alabdulatif, A survey on privacy vulnerabilities
in permissionless blockchains, Int. J. Adv. Comput. Sci. Appl. (IJACSA) 11 (9)
(2020) 130–139.

[17] H. Fabric, A blockchain platform for the enterprise—hyperledger-fabricdocs main
documentation, 2022.

[18] R3, Corda technical whitepaper, 2025, https://r3.com/blog/corda-technical-
whitepaper/. (Accessed 20 May 2025).

[19] J.K. Mudhar, J. Malhotra, S. Rani, Blockchain-based decentralized access control
framework for enhanced security and privacy for consumer electronic devices,
IEEE Trans. Consum. Electron. (2024).

[20] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, Satoshi Nakamoto
(2008).

[21] V. Buterin, et al., A next-generation smart contract and decentralized application
platform, White Pap. 3 (37) (2014) 2–1.

[22] V. Capocasale, D. Gotta, G. Perboli, Comparative analysis of permissioned
blockchain frameworks for industrial applications, Blockchain: Res. Appl. 4 (1)
(2023) 100113.

[23] H.M. Kim, H. Turesson, M. Laskowski, A.F. Bahreini, Permissionless and permis-
sioned, technology-focused and business needs-driven: understanding the hybrid
opportunity in blockchain through a case study of insolar, IEEE Trans. Eng.
Manage. 69 (3) (2020) 776–791.

[24] J. Zarrin, H. Wen Phang, L. Babu Saheer, B. Zarrin, Blockchain for decentraliza-
tion of internet: prospects, trends, and challenges, Clust. Comput. 24 (4) (2021)
2841–2866.

[25] C. Ma, X. Kong, Q. Lan, Z. Zhou, The privacy protection mechanism of
hyperledger fabric and its application in supply chain finance, Cybersecurity 2
(1) (2019) 1–9.

[26] G. Al-Sumaidaee, R. Alkhudary, Z. Zilic, A. Swidan, Performance analysis of
a private blockchain network built on hyperledger fabric for healthcare, Inf.
Process. Manage. 60 (2) (2023) 103160.

[27] H.F. Documentation, Introduction, 2025, URL https://hyperledger-fabric.
readthedocs.io/en/latest/whatis.html. (Accessed 25 May 2025).

[28] C. Fan, S. Ghaemi, H. Khazaei, P. Musilek, Performance evaluation of blockchain
systems: A systematic survey, Ieee Access 8 (2020) 126927–126950.

[29] M. Touloupou, M. Themistocleous, E. Iosif, K. Christodoulou, A systematic
literature review toward a blockchain benchmarking framework, IEEE Access
10 (2022) 70630–70644.
11
[30] F. Liu, S. He, Z. Li, Z. Li, An overview of blockchain efficient interaction
technologies, Front. Blockchain 6 (2023) 996070.

[31] A.H. Lone, R. Naaz, Demystifying cryptography behind blockchains and a
vision for post-quantum blockchains, in: 2020 IEEE International Conference for
Innovation in Technology, INOCON, IEEE, 2020, pp. 1–6.

[32] M. Esmaili, K. Christensen, Performance modeling of public permissionless
blockchains: A survey, ACM Comput. Surv. 57 (7) (2025) 1–35.

[33] H. Caliper, Hyperledger caliper, 2025, URL https://hyperledger.github.io/
caliper/. (Accessed 20 May 2025).

[34] C. Melo, F. Oliveira, J. Dantas, J. Araujo, P. Pereira, R. Maciel, P. Maciel,
Performance and availability evaluation of the blockchain platform hyperledger
fabric, J. Supercomput. 78 (10) (2022) 12505–12527.

[35] L. Ni, E. Irannezhad, Performance analysis of LogisticChain: A blockchain
platform for maritime logistics, Comput. Ind. 154 (2024) 104038.

[36] H.T. Le, T.T.L. Nguyen, T.A. Nguyen, X.S. Ha, N. Duong-Trung, Bloodchain: a
blood donation network managed by blockchain technologies, Network 2 (1)
(2022) 21–35.

[37] K. Antevski, C.J. Bernardos, Applying blockchain consensus mechanisms to
network service federation: Analysis and performance evaluation, Comput. Netw.
234 (2023) 109913.

[38] M. Sallal, G. Owenson, D. Salman, M. Adda, Security and performance evaluation
of master node protocol based reputation blockchain in the bitcoin network,
Blockchain: Res. Appl. 3 (1) (2022) 100048.

[39] M. Mazzoni, A. Corradi, V. Di Nicola, Performance evaluation of permissioned
blockchains for financial applications: The ConsenSys quorum case study,
Blockchain: Res. Appl. 3 (1) (2022) 100026.

[40] K. Ntolkeras, H. Sharif, S.D. Salmasi, W. Knottenbelt, Performance analysis of a
hyperledger iroha blockchain framework used in the UK livestock industry, in:
2021 IEEE International Conference on Blockchain (Blockchain), IEEE, 2021, pp.
456–461.

[41] P.M. Dhulavvagol, V.H. Bhajantri, S. Totad, Blockchain ethereum clients per-
formance analysis considering E-voting application, Procedia Comput. Sci. 167
(2020) 2506–2515.

[42] O. Novo, Scalable access management in IoT using blockchain: A performance
evaluation, IEEE Internet Things J. 6 (3) (2018) 4694–4701.

[43] K. Suankaewmanee, D.T. Hoang, D. Niyato, S. Sawadsitang, P. Wang, Z. Han,
Performance analysis and application of mobile blockchain, in: 2018 Interna-
tional Conference on Computing, Networking and Communications, ICNC, IEEE,
2018, pp. 642–646.

[44] H. Caliper, Architecture, 2025, URL https://hyperledger.github.io/caliper/v0.4.
2/architecture/. (Accessed 30 May 2025).

[45] S. Smetanin, A. Ometov, M. Komarov, P. Masek, Y. Koucheryavy, Blockchain
evaluation approaches: State-of-the-art and future perspective, Sensors 20 (12)
(2020) 3358.

[46] S.M.H. Bamakan, A. Motavali, A.B. Bondarti, A survey of blockchain consen-
sus algorithms performance evaluation criteria, Expert Syst. Appl. 154 (2020)
113385.

[47] M. Ajwalia, P. Shah, Performance evaluation of blockchain systems: Parame-
ters, criteria and modeling techniques, in: 2024 IEEE/ACM 17th International
Conference on Utility and Cloud Computing, UCC, IEEE, 2024, pp. 256–258.

[48] Y. Ucbas, A. Eleyan, M. Hammoudeh, M. Alohaly, Performance and scala-
bility analysis of ethereum and hyperledger fabric, IEEE Access 11 (2023)
67156–67167.

[49] N. Anita, M. Vijayalakshmi, S.M. Shalini, K.D. Lakshmi, Blockchain consensus
algorithms and platforms: a survey, J. Manag. Anal. (2025) 1–37.

[50] P.H.B. Correia, M.A. Marques, M.A. Simplicio, L. Ermlivitch, C.C. Miers, M.A.
Pillon, Comparative analysis of permissioned blockchains: Cosmos, hyperledger
fabric, quorum, and XRPL, in: 2024 IEEE International Conference on Blockchain
(Blockchain), IEEE, 2024, pp. 464–469.

[51] J. Polge, J. Robert, Y. Le Traon, Permissioned blockchain frameworks in the
industry: A comparison, Ict Express 7 (2) (2021) 229–233.

[52] S. Sarker, A.K. Saha, M.S. Ferdous, A survey on blockchain & cloud integra-
tion, in: 2020 23rd International Conference on Computer and Information
Technology, ICCIT, IEEE, 2020, pp. 1–7.

[53] H. Wu, Q. Yao, Z. Liu, B. Huang, Y. Zhuang, H. Tang, E. Liu, Blockchain for
finance: A survey, IET Blockchain 4 (2) (2024) 101–123.

http://refhub.elsevier.com/S2772-4859(25)00064-X/sb5
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb5
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb5
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb5
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb5
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb6
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb6
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb6
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb6
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb6
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb7
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb7
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb7
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb7
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb7
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb8
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb8
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb8
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb8
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb8
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb9
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb9
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb9
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb9
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb9
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb10
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb10
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb10
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb10
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb10
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb11
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb11
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb11
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb12
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb12
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb12
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb12
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb12
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb13
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb13
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb13
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb14
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb14
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb14
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb14
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb14
https://www.developernation.net/resources/reports/state-of-the-developer-nation-q4-2019/
https://www.developernation.net/resources/reports/state-of-the-developer-nation-q4-2019/
https://www.developernation.net/resources/reports/state-of-the-developer-nation-q4-2019/
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb16
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb16
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb16
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb16
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb16
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb17
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb17
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb17
https://r3.com/blog/corda-technical-whitepaper/
https://r3.com/blog/corda-technical-whitepaper/
https://r3.com/blog/corda-technical-whitepaper/
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb19
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb19
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb19
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb19
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb19
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb20
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb20
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb20
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb21
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb21
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb21
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb22
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb22
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb22
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb22
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb22
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb23
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb23
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb23
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb23
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb23
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb23
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb23
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb24
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb24
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb24
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb24
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb24
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb25
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb25
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb25
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb25
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb25
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb26
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb26
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb26
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb26
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb26
https://hyperledger-fabric.readthedocs.io/en/latest/whatis.html
https://hyperledger-fabric.readthedocs.io/en/latest/whatis.html
https://hyperledger-fabric.readthedocs.io/en/latest/whatis.html
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb28
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb28
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb28
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb29
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb29
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb29
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb29
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb29
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb30
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb30
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb30
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb31
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb31
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb31
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb31
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb31
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb32
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb32
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb32
https://hyperledger.github.io/caliper/
https://hyperledger.github.io/caliper/
https://hyperledger.github.io/caliper/
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb34
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb34
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb34
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb34
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb34
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb35
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb35
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb35
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb36
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb36
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb36
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb36
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb36
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb37
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb37
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb37
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb37
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb37
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb38
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb38
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb38
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb38
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb38
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb39
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb39
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb39
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb39
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb39
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb40
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb40
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb40
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb40
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb40
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb40
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb40
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb41
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb41
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb41
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb41
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb41
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb42
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb42
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb42
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb43
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb43
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb43
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb43
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb43
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb43
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb43
https://hyperledger.github.io/caliper/v0.4.2/architecture/
https://hyperledger.github.io/caliper/v0.4.2/architecture/
https://hyperledger.github.io/caliper/v0.4.2/architecture/
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb45
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb45
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb45
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb45
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb45
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb46
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb46
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb46
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb46
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb46
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb47
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb47
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb47
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb47
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb47
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb48
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb48
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb48
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb48
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb48
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb49
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb49
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb49
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb50
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb50
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb50
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb50
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb50
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb50
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb50
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb51
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb51
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb51
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb52
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb52
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb52
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb52
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb52
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb53
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb53
http://refhub.elsevier.com/S2772-4859(25)00064-X/sb53

	Performance comparison of permissioned and permissionless blockchain by varying workload transaction
	Introduction
	Literature Survey
	Methodology
	Experimental Design Description
	Experimental Setup
	Benchmarking Tool
	Parameter Selection Rationale
	Performance Parameters
	Benchmarking Operations
	Platform Selection Rationale
	Methodological Contribution

	Result Discussion
	Conclusion and Future Work
	Future Work

	CRediT authorship contribution statement
	Funding
	Declaration of competing interest
	References

