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 A B S T R A C T

Blockchain technology has fueled exponential growth across various industries, including finance, supply 
chain management, and healthcare, enabling greater transparency in transaction management and supporting 
decentralized implementations. This paper presents a comprehensive performance analysis of permissioned 
and permissionless blockchain platforms, specifically Hyperledger Fabric and Ethereum. The study evaluates 
these platforms with varying transaction workloads (100 to 1000 transactions) with a consistent network. Our 
objective is to measure key performance metrics such as send rate, throughput, latency, resource utilization, 
and transaction success rate using established benchmarking tools and methodologies. The findings offer 
valuable insights into the comparative strengths, limitations, and optimal use cases of these blockchain 
platforms across different performance parameters. The results indicate that Hyperledger Fabric achieves, on 
average, 3.5–4.5 times higher throughput and 10–12 times lower latency than Ethereum, while consuming 
2.5–3 times less memory across tested workloads. In contrast, Ethereum demonstrates a higher send rate and 
lower CPU demand in some operations. Overall, the study suggests that Hyperledger Fabric is better suited 
for enterprise applications that demand high scalability and performance.
1. Introduction

The arrival of blockchain technology has reformed various sectors, 
including Finance [1], Governance [2], Internet of Things (IoT) [3], 
Healthcare [4], Agriculture [5], Supply chain [6], Energy sector [7], 
Education [8], Public sector [9], Business and Industry [10], and 
more [11,12]. This technology is used for integrity verification, privacy 
and security, identity management, data management, and more [13,
14]. It introduces decentralized and transparent systems for recording 
and verifying transactions. It has attracted the significant attention of 
researchers from both academia and industry.

The growth of blockchain technology has been exponential, with 
an increasing number of projects, applications, and users entering the 
ecosystem. Recent market analyses present varying projections for the 
adoption of blockchain technology. Fortune Business Insights (2023) 
estimates that the global blockchain market will expand from $17.57 
billion in 2023 to $469.49 billion by 2030, representing a compound 
annual growth rate (CAGR) of 59.9%. In addition, Grand View Research 
(2023) projects more aggressive growth, forecasting market expansion 
from $17.46 billion to $1.43 trillion over the same period, indicating 
a CAGR of 87.7%. Similarly, Statista (2023) anticipates substantial 
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growth at a CAGR of 82.8% from 2021 to 2030, with a market valuation 
of $1.24 trillion by 2030.

Based on SlashData’s ‘‘State of the Developer Nation’’ report, a no-
table portion of the programming community shows strong engagement 
with blockchain technology. The research found that 25% of developers 
are currently learning about or building blockchain applications, while 
an additional 28% have expressed interest in working with blockchain, 
dApps, and related development frameworks. This data suggests that 
more than half of the developer population is either actively involved in 
or considering blockchain development work. Fig.  1 illustrates the per-
centage of developers learning about or working on various blockchain 
platforms, reflecting their comfort with the technology across different 
application areas.

Over the years, the evolution of blockchain technology has led 
to four primary categories: public, private, permissioned, and permis-
sionless [16]. These classifications help differentiate how participating 
nodes interact with the blockchain, achieve consensus among partici-
pants, and access or validate data (Fig.  2). Permissioned blockchains, 
platforms such as Hyperledger Fabric [17], and Corda [18], require 
participants to be explicitly granted access to the blockchain net-
work. These blockchains are commonly adopted in enterprise settings, 
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Fig. 1. % of developers working on or learning of the platform [15].

Fig. 2. Join, read, write, and commit access control in public, private, 
permissionless, and permissioned blockchain categories [16].

offering enhanced privacy, scalability, and control over network gover-
nance [19]. In contrast, permissionless blockchains, platforms such as 
Bitcoin [20] and Ethereum [21], allow anyone to join the blockchain 
network, participate in transaction validation, and access transaction 
data.

This difference between permissioned and permissionless
blockchains concerns to both public and private networks. Permis-
sionless blockchains permit any member to play the role of validator 
without constraints, but permissioned blockchains limit this role to 
known and trusted entities. This dissimilarity substantially affects 
the performance, security model, and suitability of the network for 
several applications [22]. Combining public access with authorized 
involvement in consensus to strike a balance between openness, per-
formance, and control. Some blockchain systems may also show hybrid 
features [23].

Public blockchains are permissionless in nature, providing unre-
stricted access, and any participant can join the network, authenticate 
transactions, and observe the ledger. Such systems are inherently per-
missionless because no prior permission is needed to join or participate. 
Well-known examples include Bitcoin and Ethereum, which use consen-
sus protocols such as Proof of Work (PoW) or Proof of Stake (PoS) to 
ensure security and trust within an entirely open system. While public 
and permissionless blockchains offer high degrees of transparency and 
decentralization [24], they typically suffer from limitations in scalabil-
ity, transaction rates, and energy efficiency as a result of their open and 
wide participation model [14].

Private blockchains are designed for limited access and are usually 
controlled by one organization or a consortium. Such networks are 
naturally permissioned, i.e., only approved participants can read, write, 
or authenticate transactions. Private blockchains provide more control, 
quicker transaction processing, better privacy, and are thus increasingly 
2 
used in enterprise applications like supply chain management, finance, 
and health care [25,26]. Hyperledger Fabric is a very commonly used 
example of a private, permissioned blockchain that supports modular 
architecture, configurable consensus protocols, and fine-grained access 
control mechanisms [27].

Understanding these various types of blockchain architectures is es-
sential for determining their suitability to specific use cases, when per-
formance, security, and scalability vary per the use case. By analyzing 
their behavior under varying transactional loads, this study explores the 
performance of different blockchain architectures. This highlights key 
architectural design trade-offs and their impact on system performance 
and efficiency in real-world scenarios.

With the rapid expansion of blockchain use in all sectors, there is an 
increasing demand for insights into the performance trade-offs for per-
missioned and permissionless platforms, especially performance under 
realistic workloads. Although earlier studies have noted architectural 
and functional differences, a gap remains in quantitative performance 
comparisons under controlled experimental setups. This research ad-
dresses that gap by evaluating and comparing the performance of 
Hyperledger Fabric and Ethereum under varying transaction workloads 
while maintaining a constant network size.

Furthermore, the rapid growth of the blockchain market empha-
sizes the need for comprehensive performance evaluations to mea-
sure the suitability of blockchain platforms for specific use cases [28,
29]. Understanding the performance characteristics of these platforms 
is crucial for stakeholders, as it facilitates informed decision-making 
and fosters the continued advancement and adoption of blockchain 
technology across various domains. Bitcoin, the initial application of 
the blockchain, can be assessed through four performance parame-
ters: mining reward, total forks, transaction throughput, and network 
latency [30]. Due to the potential for integration with blockchain, 
people may consider its application beyond cryptocurrency. However, 
efficiency, stability, scalability, and performance should not be over-
looked [31]. [32] delves into various performance modeling techniques 
used to analyze blockchains. These techniques are categorized into 
analytical modeling, empirical analysis, simulation, and benchmarking. 
In this work, a benchmarking method is employed to evaluate the 
performance of permissionless and permissioned types of blockchain 
using the Hyperledger Caliper tool [33].

If a blockchain network experiences persistent high load, such as 
high transaction volume or complex smart contract executions, it may 
begin to experience performance degradation [34]. This degradation 
can lead to lower system availability, where nodes become slower 
to respond or fail to respond due to excessive resource consumption. 
Resource exhaustion, such as CPU and memory overload, can cause 
node failures or instability, thereby affecting the overall reliability of 
the blockchain network. Overloaded systems also face node crashes 
or synchronization issues, which can compromise data consistency 
across the blockchain network. These issues also limit scalability, as 
the blockchain network struggles to maintain performance to handle 
growing demand. These consequences highlight the importance of per-
formance evaluation, particularly when comparing permissioned and 
permissionless models under dynamic load conditions.

In preview of our findings, the comparative evaluation reveals clear 
distinctions between the two platforms. Hyperledger Fabric demon-
strated consistently higher throughput and lower latency under con-
trolled workloads, along with greater efficiency in resource utilization. 
Ethereum, by contrast, sustained higher transaction submission rates 
but at the cost of increased resource consumption. Fabric’s resource effi-
ciency and responsiveness make it suitable for permissioned, enterprise-
grade use cases such as timebanking applications, whereas Ethereum 
reflects the trade-offs inherent in public, permissionless environments. 
These findings help in selecting platforms for real-world deployments.

This paper contributes a structured comparative study of permis-
sioned (Hyperledger Fabric) and permissionless (Ethereum)
blockchains under systematically varied transaction workloads. It
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benchmarks multiple transaction types (open, query, transfer) and 
examines a broader set of performance indicators beyond conventional 
throughput and latency, including send rate, transaction success rate, 
and resource utilization. The experimental design employs standard 
Dockerized deployments to ensure reproducibility and to isolate the 
impact of workload intensity on system behavior. The findings provide 
empirical evidence of the fundamental trade-offs between permis-
sioned and permissionless models, demonstrating Fabric’s strengths 
in throughput, latency, and efficiency, while Ethereum demonstrates 
higher submission rates, offering practical insights for blockchain plat-
form selection. Through this empirical investigation, this study ex-
amines where the performance of permissioned and permissionless 
blockchain networks excels and limits.

In the subsequent sections of this paper, we examine the existing 
work, discuss the methodology employed for performance evaluation, 
present and analyze our findings, and outline paths for future research 
in the dynamic landscape of blockchain technology.

2. Literature survey

Many recent research works have identified the performance issue 
of blockchain-based systems as a promising research topic. They have 
investigated the performance using a practical and theoretical method 
that shows potential developments in the field. This section discusses 
the performance research of various application areas related to supply 
chain [35,36], network service federation [37], cryptocurrency [38], 
finance [39], trading [40], e-voting [41], IoT [42], and mining [43].

‘‘LogisticChain’’ [35] introduces a proof of concept model that 
leverages the Hyperledger Fabric blockchain infrastructure to model 
shipping logistics workflows. System performance assessment involves 
manipulating various parameters including client volume, simultaneous 
transaction processing, and per-second transaction frequency, while 
monitoring metrics such as latency, send rate, and throughput. Read 
operations exhibit the lowest latency, while Update operations show 
the highest latency due to the complex computations and validations in-
volved. The LogisticChain implementation reveals lower latency when 
utilizing a constant-rate controller compared to a linear-rate controller.

The work [36] presents a prototype of BloodChain based on the pri-
vate blockchain Hyperledger Fabric. It evaluates the performance and 
effectiveness of application claims enhanced security, transparency, 
and traceability. Execution observes requests per second and latency 
for create, request, and update functions under different test loads. The 
system can handle a large number of requests and maintain a relatively 
stable performance. However, there are some fluctuations in latency, 
mainly when the system is under a high load, from 1000 to 10,000 
transactions.

The research work [37] compares Proof of Work (PoW), Proof of Au-
thority (PoA), Practical Byzantine Fault Tolerant (PBFT), and Proof of 
Stake (PoS) by analyzing their performance on platforms like Ethereum, 
Tendermint, and Cosmos in the context of Network Service Federation 
(NSF). It emphasizes the negotiation and implementation aspects of 
multi-cloud federation, offering insights into the appropriateness of 
each consensus mechanism for NSF applications. The research evaluates 
latency, send rate, and throughput to assess the effectiveness of each 
consensus method. It investigates the performance of Blockchain hosts 
considering CPU, memory, disk, and network usage. PoA and PBFT 
mechanisms show lower latency and higher throughput, making them 
more suitable for NSF applications.

The paper [38] introduces a reputation-based blockchain protocol 
in Bitcoin networks to assign a controler node for each cluster, which 
propagates transactions to other clusters. The protocol, called Master 
Node Based Clustering (MNBC), aims to reduce the propagation delay 
of transactions by grouping nodes based on their physical internet prox-
imity. The study evaluates the proposed methods through simulation 
experiments and shows that they can optimize the transaction propa-
gation delay compared to the Bitcoin protocol. Nevertheless, MNBC’s 
3 
efficiency declined when the proportion of compromised nodes rose 
from 5% to 30%.

[39] Evaluate the performance of the ConsenSys Quorum blockchain
platform, permissioned blockchain designed for financial applications. 
This study aims to analyze the throughput, latency, and scalability. 
It summarizes that Istanbul Byzantine fault tolerant (IBFT) represents 
the best choice for Quorum in financial applications. The paper also 
discusses the challenges faced by permissioned blockchains in achiev-
ing high performance and the potential solutions to overcome these 
challenges.

The performance of the livestock application based on the Hy-
perledger Iroha blockchain framework is evaluated [40]. The study 
assesses the framework based on three key parameters: total requests 
per second (RPS), response times in milliseconds over time, and the 
number of users in the network over time. The findings suggest that 
Hyperledger Iroha can effectively support at least 200 participants 
without errors in the network. It can handle up to 40.6 requests per 
second, and the response times are rapid, typically less than a second.

[41] develops a private blockchain infrastructure designed for demo-
cratic voting systems, utilizing blockchain network for data storage 
and processing operations. Smart contracts are implemented to handle 
transaction execution within the system. The authors conduct a com-
parative performance evaluation examining two widely-used Ethereum 
client implementations, Geth and Parity, analyzing their capabilities 
across throughput, latency, and scalability parameters. On average, 
transactions are 91% faster in the Parity client compared to the Geth 
client.

[42] compares the performance of their solution with existing access 
management solutions in IoT. The paper conducts realistic experiments 
to evaluate the performance of the proposed system in terms of latency, 
throughput, and scalability. It is observed that, in the case of only single 
management hub, the proposed solution achieves better performance 
than the optimized centralized IoT systems. The proposed implementa-
tion offers significant scalable advantages over traditional scenarios in 
the case of multiple management hubs.

‘‘MobiChain’’ [43] experiments were performed on a mobile node. 
It evaluates the performance of the proposed model in terms of com-
putation time, energy consumption, and memory utilization for chain 
verification. It observes that the chain verification process is executed 
faster and consumes less energy when transactions are grouped in 
a block. Moreover, the execution time reduces insignificantly as the 
number of threads increases.

The reviewed literature (Table  1) shows that performance evalua-
tion across blockchain applications is essential. Performance evaluation 
trend shifts from theoretical analysis to practical implementation stud-
ies. That emphasis on domain-specific performance metrics and real-
world usability factors. Scalability remains the primary challenge across 
all application domain. Energy efficiency and resource constraints are 
concerns, specifically for mobile and IoT applications. However, most 
studies focus on individual platforms rather than comprehensive cross-
architecture comparisons. This study addresses these limitations by 
systematically comparing the Hyperledger Fabric and Ethereum plat-
forms under varying workload scenarios, offering valuable insights for 
informed deployment decisions in both enterprise and public contexts.

3. Methodology

This study includes configuring Hyperledger Fabric as a permis-
sioned blockchain network and Ethereum as a permissionless blockchain
network. It implements chaincode and smart contracts and runs several 
predefined test scenarios with the benchmarking tool Hyperledger 
Caliper. That measuring various performance metrics and analyzing the 
results. To evaluate performance, the tool runs a comprehensive set 
of test scenarios that include a variety of workloads, transactions, and 
network sizes. For the study, workload transaction per second (TPS) is 
systematically varied from 100 to 1000 while keeping the network size 
constant.
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Table 1
Comparison of performance evaluation studies in blockchain applications.
 Paper Study Focus Network/Plat-

form
Consensus 
Mechanism

Tools Used Key Performance 
Metrics

Key Observations Limitations  

 [35] Analyze performance of 
a blockchain-based 
system for maritime 
logistics

Hyperledger 
Fabric

Raft Hyperledger 
Caliper

Throughput, latency, 
scalability, transaction 
processing speed

Lower latency with 
fixed-rate controllers than 
linear-rate controllers

Simulation-only results; 
lacks of real-world 
deployment data; 
scalability and 
interoperability issues

 

 [36] Scalability performance 
of permissioned 
network in Healthcare

Hyperledger 
Fabric

Not Mentioned Hyperledger 
Caliper

Data integrity, 
traceability, system 
availability, user 
adoption rates

Stable performance under 
high load; fluctuations in 
latency occur, particularly 
under high load from 1000 
to 10,000 transactions

Conceptual; lacks full 
metrics and 
implementation; privacy 
compliance concerns

 

 [37] Evaluation of 
blockchain consensus 
mechanisms for 
federated network 
services

Ethereum, 
Tendermint, 
Cosmos

Proof of Work, 
Proof of 
Authority, PBFT, 
Proof of Stake

Not Mentioned Consensus latency, 
energy use, fault 
tolerance, network 
overhead

PoW and PBFT show lower 
latency and higher 
throughput making them 
more suitable for NSF 
applications

Limited scalability 
analysis; limited 
consensus algorithms 
tested

 

 [38] Investigate the 
performance and 
security of a 
reputation-based 
blockchain in 
cryptocurrency network

Bitcoin network Rapid-
Chain/MNBC

Bitcoin 
simulator, Metis 
graph partition 
toolkit

Security metrics, 
reputation scoring, 
network resilience, 
transaction speed

Proposed Master Node based 
Clustering (MNBC) protocol 
offers improvement in 
information propagation 
delay compared to Bitcoin 
protocol. However, MNBC 
performance decreased as 
malicious nodes increased 
from 5% to 30%

Simulation focus; 
Bitcoin-specific; 
centralization and 
vulnerability concerns

 

 [39] Performance evaluation 
of Permission 
blockchain in Financial 
Services

ConsenSys 
Quorum

Raft, Clique 
Proof of 
Authority, 
Istanbul BFT

Hyperledger 
Caliper

Transaction throughput, 
privacy, compliance, 
cost-efficiency

Istanbul Byzantine 
fault-tolerant (IBFT) 
represents the best choice 
for Quorum in financial 
applications

Single-platform focus; 
lacks cross-platform 
comparison

 

 [40] Evaluate performance 
of permissioned 
network in livestock 
management and 
trading platform

Hyperledger 
Iroha

Byzantine Fault 
Tolerant

Not Mentioned Transaction processing, 
data provenance, 
system reliability, 
adoption

Supports 200+ participants, 
40.6 tx/sec throughput

Small-scale testing only; 
lacks stress/fault 
tolerance

 

 [41] Benchmark public 
blockchain in E-Voting 
scenario

Ethereum (Geth 
and Parity)

Proof of Work Not Mentioned Vote speed, system 
security, voter privacy, 
electoral integrity

Parity is  91% faster than 
Geth for transactions

Ethereum-only; limited 
security analysis; privacy 
vs. transparency 
trade-offs

 

 [42] Analyze performance of 
Blockchain-based access 
control for IoT devices

Ethereum Not Clear CoapBench Device auth speed, 
scalability, energy 
efficiency

Scalable advantage in 
multi-Hub scenario; 
single-Hub underperforms 
centralized systems

Private blockchain only; 
no constrained device 
tests; energy/resource 
limits

 

 [43] Performance analysis of 
Blockchain in Mobile 
device for mining

Bitcoin network Proof of Work VideoOptimizer 
program

Battery consumption, 
processing efficiency, 
network usage, user 
experience

Grouped transactions 
improve speed and reduce 
energy use

Energy consumption and 
bandwidth not fully 
evaluated; mobile device 
variability

 

3.1. Experimental design description

The experimental design follows a structured workflow where busi-
ness logic is developed independently for each platform before per-
formance evaluation. The process consists of four main phases: devel-
opment of business logic, configuration for benchmarking, benchmark 
execution and measurement, and result analysis.

Development of Business Logic: Application-level business logic 
was developed independently for each platform. For Hyperledger Fab-
ric, chaincode was implemented in the Node.js, while for Ethereum, 
smart contracts were written in Solidity. These implementations cov-
ered three core functions (Open, Query, Transfer) and were validated 
through unit testing prior to benchmarking. The code was deployed 
on private test networks for each platform, each hosted in an iso-
lated Dockerized environment to ensure fairness and control across 
experiments.

Configuration for Benchmarking: Hyperledger Caliper served as 
the benchmarking framework. It was configured using an adapter 
and network files referencing the deployed business logic, specifying 
workload parameters, transaction types, and network details. Caliper 
4 
does not develop or execute code internally; instead, it interfaces with 
predeployed smart contracts or chaincode via standardized blockchain 
APIs. This ensures that benchmarking reflects actual system behavior 
rather than simulated execution.

Benchmark Execution and Measurement: Once configured, Caliper 
initiated benchmarking by generating workloads against the deployed 
networks. Each experimental run followed a systematic sequence: ini-
tially, blockchain networks are deployed using validated business logic; 
Caliper then connects to each network via standardized APIs. Once 
connected, workload modules initiate transaction patterns defined by 
experimental parameters, prompting the execution of business logic on 
the networks. Throughout this process, Caliper captures transaction-
level metrics through analysis of API interactions and timestamps. 
Parallel system-level monitoring captures resource utilization data, pro-
viding a comprehensive view of system performance. Each scenario was 
executed three times, and Caliper aggregates and stores all results for 
statistical and comparative analysis. Scalability was assessed by varying 
transaction rates across the workload range, while keeping the network 
size fixed to isolate workload effects.

Result Analysis and Reproducibility: Caliper outputs structured 
JSON and performance reports, which were analyzed for performance 
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Table 2
Test environment for performance evaluation of blockchain networks.
 Component Platform/Network Version  
 Benchmarking Platform Hyperledger Caliper v0.5.0  
 Blockchain Network Ethereum 1.0  
 Hyperledger Fabric 2.5.0  
 Business Logic Smart Contract with Solidity 0.8.23  
 Chaincode with Node.js 16.13.1, 
 12.22.9  

trends and platform comparisons. Control variables, including hard-
ware specifications, software versions, Docker container settings, and 
environment parameters, remained constant across all experiments 
to ensure comparability. Detailed documentation of all configura-
tion parameters, software versions, and experimental steps enables 
reproducibility.

3.2. Experimental setup

Table  2 shows the test environment prepared for this performance 
study. Hyperledger Caliper v0.4.2 was used as a benchmarking tool. 
Chaincode, smart contract development, and execution were carried 
out using the programming languages Go, Solidity, and JavaScript. 
Visual Studio Code (VSCode) worked as a development environment 
for code creation and debugging. For the CPU configuration, we used 
an Intel Core i5-1135G7 CPU operating at 2.40 GHz for the Ubuntu 
v22.04.3 LTS system.

We used Hyperledger Fabric v2.5.0 and Ethereum as permissioned 
and permissionless networks, respectively, and deployed them with 
Docker engine versions 20.10.22 and 24.0.7. We used Docker Com-
pose versions 2.15.1 and 1.29.2 to manage containerized blockchain 
environments.

3.3. Benchmarking tool

Hyperledger Caliper is a benchmarking tool designed explicitly to 
evaluate the performance of blockchain networks. It provides a frame-
work for executing different scenarios, measuring various performance 
metrics, and analyzing the results. Caliper’s general framework [44] is 
used to run benchmarks against various blockchain frameworks. That 
generates a workload for a particular system under test (SUT) and keeps 
track of how it responds all the time. Finally, a report will be produced 
based on the observed SUT responses. This simplistic view is depicted 
in Fig.  3.

Caliper needs many inputs to execute a benchmark, regardless of 
the selected SUT. The following subsets provide a quick summary of 
these inputs.

• Benchmark configuration file: This file specifies the benchmark-
ing process’s parameters, including the blockchain platform, num-
ber of participating nodes, consensus algorithms, and other test-
specific parameters.

• Network configuration file: This file is dedicated to the blockchain 
network setup and contains information about network nodes, 
their addresses, and other relevant network-related details.

• Workload modules: It is the brain of the benchmark. It customizes 
the benchmarking workload, allowing users to tailor test sce-
narios to their specific use cases and evaluate the blockchain 
platform’s performance under realistic conditions.

• Benchmark artifacts: Artifact or result generated by the bench-
marking process, encapsulating key performance metrics, trans-
action details, and other relevant data collected during the ex-
periment.
5 
Fig. 3. Architecture of Hyperledger Caliper [44].

• Caliper core: This central component is responsible for the work-
load module and orchestrating the benchmarking process. It in-
cludes the core logic for test execution, result aggregation, and 
communication with blockchain networks.

• Benchmark Process:
- Initialize the Caliper core, load the specified workload module, 
and connect to the target blockchain network using the provided 
configuration.

- Caliper generates and submits transactions to the blockchain 
network based on the workload module.

- The network monitor records relevant metrics, and the result 
writers store the collected data for later analysis.

- The Caliper produces detailed reports and analysis, allowing users 
to evaluate the performance of the tested blockchain platform.

Performance metrics such as send rate, throughput, latency, re-
source utilization, and transaction success rates can be measured and 
analyzed. These metrics assess the blockchain network’s scalability, 
efficiency, and reliability. Many research articles present theoretical 
insights, but may lack empirical evidence or real-world case studies to 
support their findings.

3.4. Parameter selection rationale

In the context of performance evaluation for blockchain networks, 
we used several key metrics to assess the network’s efficiency and effec-
tiveness. The performance metrics in this study were carefully selected 
to align with both prior blockchain performance evaluation and bench-
marking standards and the specific objectives of this research. Our 
chosen metrics align with established performance modeling techniques 
categorized into analytical modeling, empirical analysis, simulation, 
and benchmarking approaches [32]. Previous systematic surveys [28,
29,45–47] consistently identify throughput, latency, and resource uti-
lization as the core indicators of blockchain performance, as they 
directly reflect scalability, efficiency, and user experience. [28] iden-
tifies throughput, latency, and resource efficiency as the most critical 
indicators of blockchain usability, while [29] emphasizes the need 
to capture both user-perceived and system-level performance charac-
teristics. In parallel, [45] classifies throughput, latency, and resource 
consumption as the fundamental evaluation criteria applied across 
multiple approaches, and [46] highlights the necessity of analyzing 
consensus through transaction latency and success rate. [47] reinforces 
this view, noting that among the various metrics, send rate, throughput, 
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Table 3
Symbolic definitions for blockchain performance 
metrics.
 Symbol Meaning  
 𝑇𝑥 Transactions  
 𝑇𝑥𝑝 Successfully processed transactions 
 𝑇𝑡 Transaction processing duration  
 𝑇init Transaction initiation time  
 𝑇conf Transaction confirmation time  
 𝑅𝑢 Actual resource usage  
 𝑅total Total available resources  

latency, CPU utilization, memory usage, energy efficiency, and security 
are consistently highlighted as the most important and widely adopted 
empirical performance evaluation parameters for blockchain systems.

Other vital parameters, energy efficiency and security metrics, were 
excluded from this baseline study due to scope constraints. Energy 
efficiency evaluation requires specialized power measurement infras-
tructure and extended observation periods that would significantly 
complicate the controlled experimental design. Security assessment re-
quires separate methodologies, including penetration testing and cryp-
tographic analysis, representing a distinct research domain beyond the 
performance benchmarking scope. This study establishes foundational 
performance baselines that inform subsequent specialized energy and 
security evaluations.

3.5. Performance parameters

These metrics collectively address usability, adoption, and sustain-
ability of blockchain technologies and are therefore central to any 
comprehensive performance evaluation. These metrics provide a solid 
and comprehensive foundation for assessing the performance trade-offs 
between permissioned and permissionless blockchain platforms across 
different workload scenarios. Their combined result also proves the net-
work’s scalability, efficiency, and practical deployment considerations. 
Different blockchain networks may prioritize these metrics over others 
based on their use cases and requirements. Table  3 shows the meaning 
of the symbols utilized in the definitions of the blockchain performance 
metrics.

Send Rate: That represents the number of transactions sent in the 
network by the participant node per unit of time. It measures the rate 
at which transactions are submitted to the blockchain network. 

Send Rate = Total number of transactions sent
Time duration =

∑

𝑇𝑥
𝑇𝑡

(1)

Throughput: It measures the processing capacity of the blockchain 
network, i.e., the number of transactions successfully processed per unit 
of time. It reflects the network’s ability to handle a certain volume of 
transactions within a given timeframe. 

Throughput =
Total number of transactions successfully processed

Total time period

=
∑

𝑇𝑥𝑝
∑

𝑇𝑡
(2)

Latency: It refers to the time delay between initiating a transaction 
and its final confirmation or inclusion in the blockchain network. It 
measures the time taken for transactions to be propagated, validated, 
and included in a blockchain. 
Latency = Time taken for transaction confirmation

− Time of transaction initiation (3)

= 𝑇conf − 𝑇init
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Success Rate: It indicates the proportion of transactions or opera-
tions that are executed successfully without errors or failures. 

Success Rate = Total number of transactions successfully processed
Total number of transactions

=
∑

𝑇𝑥𝑝
∑

𝑇𝑥

(4)

Resource Utilization: Resource utilization assesses the efficiency 
of the blockchain network’s resources, such as computing power and 
memory usage, in processing and validating transactions. It measures 
how effectively the network utilizes its resources to maintain its oper-
ation. 

Resource Utilization =
Actual resource usage
Total available resources =

𝑅𝑢
𝑅total

(5)

3.6. Benchmarking operations

In the context of performance evaluation, the ‘open’,‘query’, and 
‘transfer’ functions are essential tasks carried out during benchmarking 
scenarios to evaluate blockchain network performance [48]. Every 
function has a specific role: ‘open’ initializes and sets up the blockchain 
network, ‘query’ collects data from the network, and ‘transfer’ carries 
out transactions to move assets or information. By incorporating these 
functions into benchmarking scenarios, Caliper allows for the mea-
surement and analysis of various performance metrics. This supports a 
thorough evaluation of the blockchain network’s efficiency, scalability, 
and reliability across varying workloads.

• Open function: The open function sets the blockchain network 
up for benchmarking by initializing it. This could involve tasks 
such as setting up or creating accounts or participants, deploying 
smart contracts, configuring network parameters, loading initial 
data onto the blockchain, and so forth. The function initializes 
the starting state of the blockchain network before running any 
benchmark transactions.

• Query Function: The query function fetches data from the
blockchain network. This could involve checking transaction 
records, smart contract status, account balances, or other relevant 
information stored on the blockchain. Evaluating the effectiveness 
of data retrieval systems and the responsiveness of the blockchain 
network to read queries depends on query operations.

• Transfer Function: Transfer function is essential for the transfer of 
value or assets in the blockchain network. It consists of submitting 
transactions into the network to transfer tokens, assets, or data 
between smart contracts or accounts. Transfer operations are 
essential for assessing transaction-processing capacity.

With these functions, Caliper enables users to simulate real-world 
scenarios by benchmarking and evaluating their performance under 
various workloads and conditions across various blockchain networks.

3.7. Platform selection rationale

Various surveys and comparative analyses highlight Ethereum and 
Hyperledger Fabric as leading examples of permissionless and per-
missioned blockchains, respectively, due to their consensus algorithms 
and performance capabilities. These two systems are the most widely 
adopted and documented in both academic research and industry de-
ployments, making them ideal for comparative studies.

Examples of public permissionless blockchains include Bitcoin,
Ethereum, Litecoin, Cardano, and Polkadot, all of which enable open 
participation. By contrast, permissioned blockchains such as Hyper-
ledger Fabric, R3 Corda, Quorum, Ripple, and IBM Blockchain empha-
size controlled access, enhanced privacy, and enterprise-grade function-
ality. Many permissionless platforms, including Binance Smart Chain 
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(BSC), Polygon, Avalanche, Fantom, and Tron, extend Ethereum-like 
designs, leveraging the Ethereum Virtual Machine (EVM) or Ethereum-
inspired smart contracts while maintaining public participation. Sim-
ilarly, permissioned platforms like Quorum, Corda, Hyperledger Saw-
tooth, and IBM Blockchain adopt Hyperledger Fabric’s modular,
privacy-oriented, and enterprise-driven design principles. In addition, 
several leading platforms, including Ethereum 2.0, Cardano, Polkadot, 
Tezos, and Algorand, are transitioning toward or have already adopted 
PoS. Research [32] focused on performance modeling of a public per-
missionless blockchain. It suggests that, PoW and PoS are widely used 
and the most popular consensus algorithms in this category. Although 
Algorand has emerged as a promising alternative, Ethereum represents 
this class majorly. A detailed study [49] evaluates the performance of 
consensus algorithms and blockchain platforms using twelve assess-
ment indexes. It also discusses eight common blockchain platforms, 
including Bitcoin, Ethereum, Hyperledger Fabric, Quorum, Ripple, 
Corda, EOS, and IOTA, analyzed by these indexes to highlight their 
distinct strengths. Comparative analyses of permissioned blockchain, 
such as Cosmos, Hyperledger Fabric, Quorum, and XRPL, demon-
strate Fabric’s superiority in consensus, smart contracts, custom tokens, 
privacy, latency, and throughput, despite limitations in interoperabil-
ity [50]. Researchers [51] provide a comparative study of permissioned 
frameworks with regard to the community activities, performance, scal-
ability, privacy and adoption criteria. Study shows fabric is promising. 
In the area of blockchain cloud integration, while providers such as 
AWS and Google Cloud offer Blockchain-as-a-Service (BaaS), Fabric 
remains the preferred choice for private deployments [52]. Survey [53] 
investigated 12 most popular blockchain platforms and elaborated six 
platforms that are widely applied in finance. This study observes that 
the proportion of companies using Ethereum and Hyperledger Fabric 
for application development is 24% and 38%, respectively, among 
the top 100 companies. It demonstrates their market dominance in 
financial use cases. This highlights why Ethereum and Hyperledger 
Fabric are regarded as foundational benchmarks for permissionless and 
permissioned blockchains, respectively, since studying them sufficiently 
captures the core architectural and performance traits of each category. 
Thus, focusing comparative performance studies on Ethereum and Hy-
perledger Fabric is sufficient to capture the essential dynamics of these 
two prominent blockchain domains. Including additional platforms for 
a performance comparison study introduces redundant comparisons, as 
many permissionless or permissioned blockchains often derive from 
or closely align with these core models. [49] highlights that the 
optimal blockchain platform depends on the particular application and 
desired performance criteria such as throughput, scalability, energy 
consumption, cost, and security. So the final selection of a framework 
for a specific use case is always a trade-off.

3.8. Methodological contribution

While Hyperledger Caliper serves as the underlying benchmarking 
tool, this study goes beyond its default usage by proposing a structured 
evaluation framework that introduces methodological innovations to 
enhance both analytical depth and practical relevance. Rather than 
relying solely on the tool’s default configurations, the study introduces 
distinct experimental controls and performance metrics, positioning the 
work beyond generic benchmarking practices (See Fig.  4).

This study intentionally employs Hyperledger Caliper to ensure 
consistency and comparability with prior research. Unlike conven-
tional applications of Caliper, we extend its application through a 
structured framework that incorporates systematic workload varia-
tion, multi-function benchmarking, extended performance metrics, and 
standardized deployments. While the development of entirely new 
benchmarking tools lies beyond the scope of this work, the framework 
established here offers a reliable baseline and can serve as a founda-
tion for future research exploring more adaptive or context-specific 
evaluation methodologies.
7 
Fig. 4. Generic caliper vs proposed framework.

First, transaction workloads were systematically varied between 100 
and 1000 TPS while maintaining a fixed network size. This design 
isolates the impact of workload intensity without conflating it with 
network scaling, a limitation observed in prior benchmarking studies. 
Second, the research develops a 3-dimensional analysis approach exam-
ining platform performance across distinct functional operations (Open, 
Query, Transfer) rather than aggregate metrics. This function-specific 
methodology reveals performance characteristics that aggregate eval-
uations obscure, providing granular insights for application-specific 
deployment decisions. Finally, both Ethereum and Hyperledger Fabric 
are deployed in standardized Dockerized environments with equivalent 
business logic implemented in smart contracts and chaincode. This en-
sures fairness, reproducibility, and guarantees that observed differences 
arise from platform characteristics rather than deployment variations.

Collectively, these contributions move the study beyond a routine 
use of existing tools and establish a replicable evaluation framework for 
blockchain performance assessment. The approach not only strengthens 
the validity of comparative analysis between permissioned and permis-
sionless systems but also provides a methodological template for future 
benchmarking studies in the specific use case.

4. Result discussion

The result illustrates how Ethereum and Hyperledger Fabric (HLF) 
performed when we tested different functions like ‘Open’, ‘Query’, and 
‘Transfer’. For this result, the transaction load gradually increased from 
100 to 1000 transactions per second (TPS) while keeping the network 
size constant to see how each platform would handle the workload. 
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Table 4
Performance results for ‘open’ function.
 TPS Send Rate (TPS) Throughput (TPS) Max Latency (s) CPU Utilization (%) Memory Usage (MB)
 Ethereum HLF Ethereum HLF Ethereum HLF Ethereum HLF Ethereum HLF  
 100 100.2 121.4 31.1 120.5 22.77 1.96 1.96125 7.56750 1239.04 505.08  
 200 200.4 145.9 31.1 140.0 27.50 1.96 2.16250 7.99500 1505.28 520.84  
 300 300.9 150.5 31.9 149.4 28.28 1.92 0.17625 8.28125 1546.24 490.57  
 400 400.8 175.2 31.2 155.7 29.76 1.99 0.23375 6.47375 1525.76 516.42  
 500 501.0 154.6 31.2 148.2 30.18 1.95 0.04875 7.60125 1525.76 517.06  
 600 600.2 158.8 31.9 153.2 32.89 1.97 0.45607 8.04947 1520.73 505.85  
 700 700.2 167.9 31.4 155.3 34.45 2.05 0.57142 9.67462 1555.92 515.79  
 800 800.3 163.8 31.5 157.4 36.10 2.22 0.79558 9.69863 1555.22 516.57  
 900 900.4 157.7 31.1 159.1 38.07 2.31 0.39635 9.64107 1550.10 511.98  
 1000 1000.2 162.7 31.3 160.4 39.86 2.35 0.3383 10.15398 1545.31 518.39  
Fig. 5. Performance results for ‘open’ function with the varying workload from 100 to 1000.
Metrics include send rate, throughput, maximum latency, CPU utiliza-
tion, and memory usage. This work provides valuable insights into 
platform activity under various transaction workloads, offering a subtle 
understanding of efficiency and scalability.

As shown in Fig.  5 and Table  4, the result for the ‘open’ func-
tion, reveal the following trends: The open function highlights key 
differences in how Ethereum and Hyperledger Fabric process write-
intensive workloads. Across the full workload spectrum (100–1000 
TPS), Fabric consistently maintains throughput close to the incoming 
send rate, achieving up to 160 TPS. In contrast, Ethereum’s throughput 
is around 31 TPS irrespective of higher send rates. These numbers 
reflect Ethereum’s consensus constraints that restrict how many ‘open’ 
transactions can be committed per unit time. Ethereum’s maximum 
latency increases linearly with workload, exceeding 39 s at 1000 TPS. 
This outcome is typical in a PoW-based system, where transaction 
congestion occurs in the mempool when the volume of submitted trans-
actions exceeds the network’s processing capacity. Fabric, in contrast, 
maintains latency within 2–3 s even at peak load, as its modular 
consensus (ordering service with endorsement policies) is optimized 
for rapid block finality in permissioned settings. Resource utilization 
aligns with these patterns. Ethereum exhibits a steadily rising CPU 
and memory usage as workload increases, reflecting the computational 
burden of block validation and state updates under PoW. Fabric, while 
consuming CPU and memory at lower levels, shows slightly increased 
CPU usage at higher TPS as the ordering service manages more frequent 
block commits. Overall, the open function analysis highlights Fabric’s 
superior suitability for enterprise contexts requiring reliable throughput 
and bounded latency, while Eth-ereum demonstrates the scalability 
limits imposed by its permissionless consensus.
8 
Fig.  6 and Table  5 illustrate several observable trends regarding the 
‘query’ function, summarized as follows: The query operation demon-
strates a significantly different pattern. Here, both Ethereum and Fabric 
achieve throughput nearly equal to the send rate across all workloads 
up to 1000 TPS. Queries are read-only operations that do not alter 
the blockchain state, meaning they bypass the heavy consensus bottle-
necks associated with write transactions. As a result, Ethereum handles 
queries at near-linear scalability, achieving 1000 TPS throughput when 
pushed to that workload. Fabric mirrors this performance, consistently 
matching the query submission rate. Latency for queries remains neg-
ligible on both platforms, with Ethereum maintaining under 0.03 s 
and Fabric slightly higher but still well under 0.1 s across all load 
levels. This clear difference with the open function highlights the ar-
chitectural difference between read and write operations in blockchain. 
Since queries mainly involve state lookups, consensus delays and block 
validation overheads are avoided. CPU and memory utilization reflect 
the lightweight nature of queries. Ethereum’s CPU consumption is 
somewhat higher than Fabric’s, which aligns with its execution envi-
ronment (EVM-based contract logic and PoW validation, even for read 
calls). Fabric remains comparatively more efficient, with CPU usage 
below 1% and a stable memory usage across workloads. The query 
analysis confirms that both platforms can scale read-heavy workloads 
effectively, but Fabric achieves this with lower resource overhead.

As shown in Fig.  7 and Table  6, the behavior of the ‘transfer’ func-
tion exhibits the following trends: The transfer function presents the 
most demanding workload by combining state updates with consensus 
enforcement. Fabric maintains throughput above 130 TPS across all 
load levels, reaching at 160 TPS, whereas Ethereum again saturates 
at 38 TPS. This limit in Ethereum reflects the same architectural 
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Table 5
Performance results for ‘query’ function.
 TPS Send Rate (TPS) Throughput (TPS) Max Latency (s) CPU Utilization (%) Memory Usage (MB)
 Ethereum HLF Ethereum HLF Ethereum HLF Ethereum HLF Ethereum HLF  
 100 100.1 699.3 100.1 697.8 0.01 0.09 0.55500 0.31125 1249.28 486.28  
 200 200.3 708.2 200.2 706.7 0.03 0.08 0.47875 0.42125 1361.92 491.44  
 300 300.4 686.8 300.3 685.4 0.02 0.15 0.19125 0.42750 1372.16 481.57  
 400 401.0 714.8 400.8 713.8 0.01 0.05 0.25125 0.22000 1341.44 503.12  
 500 501.0 705.7 501.0 703.2 0.02 0.05 0.15000 0.40875 1341.44 506.56  
 600 600.2 705.6 599.3 704.6 0.018 0.06 0.22 0.60485 1347.15 500.00  
 700 700.2 706.5 700.0 707.2 0.019 0.08 0.234 0.79843 1346.9 494.6  
 800 800.3 711.2 799.5 713.5 0.014 0.07 0.3421 0.7649 1347.1 497.31  
 900 900.4 710.3 898.9 713.2 0.014 0.08 0.352 0.81362 1348.7 508.32  
 1000 1000.2 711.1 999.6 708.6 0.024 0.06 0.3403 0.83039 1349.0 508.0  
Fig. 6. Performance results for ‘query’ function with the varying workload from 100 to 1000.
bottlenecks seen in the open function: block gas limits and the se-
quential nature of PoW consensus. Fabric’s higher throughput results 
from its efficient ordering and endorsement process. This allows for 
parallelism and trust assumptions in a controlled, permissioned en-
vironment. Latency patterns further highlight this gap. Ethereum’s 
maximum latency increases sharply with increasing load, from 17 s at 
100 TPS to nearly 32 s at 1000 TPS. This Growth reflects the backlog 
of pending transactions in the mempool during sustained load. Fabric 
maintains latency under 3.5 s even at peak workloads, reinforcing 
its strength in providing predictable responsiveness. Resource utiliza-
tion trends are consistent with the throughput findings. Ethereum’s 
CPU usage steadily increases beyond 40% as the system struggles 
with backlogged transactions and block production overhead. Mem-
ory consumption also increases, exceeding 1600 MB at the highest 
workload. Fabric, in contrast, consumes minimal additional resources, 
with CPU usage increasing modestly but still below 7% and memory 
remaining near 540 MB. These results show Fabric’s advantage for 
financial or transactional systems that need reliable settlement speed 
and efficiency.

5. Conclusion and future work

This study provides a detailed performance comparison of permis-
sioned and permissionless blockchains under workloads ranging from 
100 to 1000 TPS. Ethereum consistently achieves a higher send rate, 
reflecting its suitability for scenarios where transaction initiation speed 
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and public participation are essential. Hyperledger Fabric offers, on av-
erage, 3.5–4.5 times higher throughput and 10–12 times lower latency 
across tested functions, demonstrating its efficiency for enterprise-grade 
workloads. Resource utilization further highlights the trade-offs: Fabric 
consumes 2.5–3 times less memory than Ethereum but requires higher 
CPU usage for some operations, such as open transactions. Ethereum, 
on the other hand, often shows lower CPU demand but at the cost 
of significantly higher memory consumption and reduced confirmed 
throughput. Both systems scale with increasing workloads, showing 
robustness across the tested range. Together, the analyses of open, 
query, and transfer functions reveal consistent architectural trade-offs. 
Ethereum’s permissionless design emphasizes openness and security 
but sacrifices throughput and latency, limiting its suitability for high-
volume enterprise use. Hyperledger Fabric, tailored for permissioned 
environments, achieves higher throughput, bounded latency, and more 
efficient resource use. Queries scale well in both systems, though Fabric 
remains more efficient.

The results of this study also have direct practical implications 
for the planned application. Since such systems demand predictable 
throughput, low latency, and efficient resource utilization to sup-
port frequent credits, debits, and balance queries, Hyperledger Fabric 
emerges as the more suitable platform. Its ability to sustain consistent 
performance up to 1000 TPS ensures reliability for community-scale 
deployments, where transaction volumes are moderate but require high 
integrity. Ethereum, while offering openness and higher transaction 
submission rates, introduces latency and resource inefficiencies that 
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Table 6
Performance results for ‘transfer’ function.
 TPS Send Rate (TPS) Throughput (TPS) Max Latency (s) CPU Utilization (%) Memory Usage (MB)
 Ethereum HLF Ethereum HLF Ethereum HLF Ethereum HLF Ethereum HLF  
 100 100.2 160.4 37.6 158.5 17.41 1.94 0.78375 4.69875 1505.28 519.98  
 200 200.4 173.1 36.7 165.1 22.41 1.94 1.08125 3.7875 1576.96 540.44  
 300 300.4 190.5 40.7 131.9 21.52 2.49 1.80875 2.905 1587.20 514.17  
 400 401.0 202.5 39.4 139.3 23.07 2.25 0.97625 1.495 1556.48 541.42  
 500 501.3 200.3 38.4 139.6 24.19 2.22 0.04875 0.610 1556.48 540.46  
 600 600.2 200.4 38.6 141.5 26.27 2.84 0.45607 4.71 1553.30 539.85  
 700 700.2 202.5 37.9 140.3 27.16 3.05 0.57142 5.21 1555.92 540.79  
 800 800.3 201.6 38.7 139.8 28.47 3.00 0.79558 5.617 1561.61 541.57  
 900 900.4 203.3 38.2 139.4 30.35 3.26 0.39635 6.01 1590.00 540.98  
 1000 1000.2 201.9 38.4 137.1 31.97 2.94 0.3383 6.401 1602.31 541.60  
Fig. 7. Performance results for ‘transfer’ function with the varying workload from 100 to 1000.
could hinder responsiveness in a timebanking context. These insights 
provide a strong foundation for selecting Fabric as the underlying 
platform for the forthcoming application.

5.1. Future work

While this study evaluated blockchain performance by varying 
transaction workloads under a fixed network size, future research could 
extend the analysis by exploring how network size impacts system 
behavior. As the number of participating nodes increases, consensus 
mechanisms experience additional communication overhead, which 
may affect performance differently than transaction load. These in-
vestigations may reveal performance patterns that cannot be observed 
simply by adjusting the system’s workload. They can also help explain 
real-life situations where the performance of platforms changes de-
pending on the number of users involved, not just the system’s overall 
activity.

Given the rapid evolution of blockchain technologies, this study 
may not cover every emerging enhancement or innovation in platform 
design and interaction. Future work should include new consensus 
protocols, updated framework versions, and wider deployment config-
urations to stay relevant. Building on these findings, we plan to adopt 
Hyperledger Fabric and move toward developing and testing a real-
world application, validating the platform’s performance and usability 
in a live deployment scenario.
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