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Medical image fusion enhances the intrinsic statistical properties of original images by integrating comple-
mentary information from multiple imaging modalities, producing a fused representation that supports more
accurate diagnosis and effective treatment planning than individual images alone. The principal challenge lies in
combining the most informative features without discarding critical clinical details. Although various methods
have been explored, it remains difficult to consistently preserve structural and functional features across mo-
dalities. To address this, we propose a deep neural network-based framework that incorporates morphologically
processed residuals for competent fusion. The network is trained to directly map source images into weight maps
thereby overcoming the limitations of traditional activity-level measurements and weight assignment algorithms,
and enabling adaptive and reliable weighting of different modalities. The framework further employs image
pyramids in a multi-scale design to align with human visual perception, and introduces a local similarity—based
adaptive rule for decomposed coefficients to maintain consistency and fine detail preservation. An edge-
preserving strategy combining linear low-pass filtering with nonlinear morphological operations is used to
emphasize regions of high amplitude and preserve optimally sized structural boundaries. Residuals derived from
the linear filter guide the morphological process ensuring significant regions are retained while reducing arti-
facts. Experimental results demonstrate that the proposed method effectively integrates complementary infor-
mation from multimodal medical images while mitigating noise, blocking effects, and distortions, leading to
fused images with improved clarity and clinical value. This work provides an advanced and reliable fusion
approach that contributes substantially to the field of medical image analysis, offering clinicians enhanced
visualization tools for decision-making in diagnosis and treatment planning.

1. Introduction

Image fusion technology produces a well-informed single fused
image which is highly informative due to combination of multiple
source images. In addition to combining image data, this procedure also
entails applying one or more algorithms to specifically process the
resultant image [1-3]. In medical imaging, fusion is the procedure to
combine two or multiple images from several imaging technologies to
retain the benefit of complimentary information to generate a more
complete image. Due to the emergence of medical imaging technology
which includes MRI (magnetic resonance imaging), CT (computed to-
mography), PET (positron emission tomography), SPECT (single photon
emission computed tomography) and several other imaging modalities

are widely used in clinical applications and treatment planning. There
are many kinds of medical information available from each imaging
method. As a useful reference for lesion localization, CT images for
instance provide great spatial resolution and good bone imaging.
However, soft tissue and fine details of invasive tumours are harder for
CT to show. On the other hand, MRI is excellent at soft-tissue imaging
which makes it perfect for figuring out how immense a lesion. While
their lesser spatial resolution may restrict the ability to diagnose tu-
mours, PET and SPECT can offer useful information about the body’s
metabolic activities. Depending on a single image type frequently does
not yield the best visualization since each imaging modality has inherent
limitations resulting from different imaging principles. Medical image
fusion can therefore produce more accurate and comprehensive images
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by integrating the complementary information and strengths of several
imaging modalities, greatly assisting in diagnosis and treatment plan-
ning [4,5].

Recent decades have seen a rise in interest in medical image fusion
research, especially in the domain of multiscale transform-based
methods. To summarize, the foremost sequential procedures of multi-
scale transform-based fusion techniques comprise source image
decomposition into several coefficients, each of which uses sophisticated
operators to encapsulate distinct feature information. In addition,
different pixel-level fusion criteria are utilized to combine the matching
components and inverse transform is carried out for generating a final
fusion result. The initial conventional methods were those that depends
on wavelet transforms [6] and Laplacian pyramid transforms [7].
Existing methods acquired diverse image feature information via mul-
tiscale transformation, as various frequency components were preserved
using identical or simplistic fusion algorithms during the amalgamation
of sub-bands. However, a constraint of these approaches is that they
analyse only a single image attribute, ignoring others which might
significantly reduce the fusion effect [8]. To address this issue, several
advanced methods were presented. Tian et al [9] used pixel or regional
data to build fusion rules across frequency bands. The fractional wavelet
transform approach by Xu et al [10] improves fusion coefficient
description. Likewise, Lie et al. presented a sparse representation theory
based on minimum spanning trees (MST) [11]. The above-mentioned
systems use diverse rules across several frequency bands to get
adequate results; however, their rules prevent them from fully inte-
grating detail and contour information. Artifact difficulties are often
inevitable due to down sampling and up sampling. To reduce the Gibbs
phenomenon, stationary wavelet transform (SWT) image fusion ap-
proaches were presented [12], however poor rules hindered fusion of
images. Additionally, a shift invariant approaches that include
non-subsampled contourlet transform (NSCT) have gained attention. In
terms of NSCT approach, Ganasala et al [13] used Laplacian operators
and entropy on low and high coefficients. The NSCT based algorithms
integrate low and high frequency coefficients via phase congruency,
focused contrast, or Laplacian energy restrictions [14]. A popular
shift-invariant image decomposition and reconstruction approach is
such as nonsubsampled shearlet transform (NSST) uses a shear wave
filter. According to Liu et al [15], the gradient factor improves coeffi-
cient optimization using the structure tensor and NSST. Singh et al [16]
formed a cascaded model using ripplet transform and NSST to enhance
direction information. The above methods reveal directional tissue
features accurately and comprehensively. The huge difference in
parameter efficiency among filters affects the stability of the fusion
performance based on parameter selection [17]. This method use pulse
coupled neural network (PCNN) which represents a simple subtle
vision-based neural network. The global domain PCNN-based approach
to image fusion can preserve complex features. However, activating
neurons to increase efficiency short of training remains difficult.

Huang et al [18] stimulate each PCNN neuron with the image block’s
Laplacian energy. An adaptive PCNN method are used in high coefficient
region of NSST for increasing PCNN efficiency and fusion quality [19].
Even though there are several PCNN-related fusion approaches, the
optimisation of coefficient and threshold characterization are still being
explored. Recently, convolutional neural network (CNN) related models
are used to solve fusion of medical images problems [20]. The shortages
of small sampling data as well as a difficulty for construction of deep
neural networks have hampered their consistency. The multiscale
domain recommends that CNN sampling or convolution can easily cause
fusion phase information loss. Also, a fusion method on the basis of fuzzy
radial basis operator neural network is introduced [21], which only
activated input neurons using image domain pixel features, which may
have limited neural network cognitive capacity and performance.
Medical image fusion research emphases on shift-invariant multiscale
transformations to create frequency sub-band-specific fusion rules.
However, selecting the best fusion rules is difficult. An advanced
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SR-SCNN blending approach for image fusion [22] contains three pha-
ses. After entering complete source images into standard orthogonal
matching pursuit, the super-resolution fusion result is generated utilis-
ing the max rule to enhance pixel localisation. Besides, each source
image receives a special SCNN-based K-SVD dictionary learning
approach. A technique improves image information extraction and
fusion result sparsity due to its non-linear behaviour. Chao et al [23]
develops a novel fusion approach utilising the DSWT and RBFNN. The
method first use 2-level decomposition to split two images into seven
segments with low- and high frequency sub-bands for DSWT processing.
We used the upgraded RBFNN to replace incomplete parts in the same
areas of the two images, taking into account the target’s gradient and
energy. An unsupervised sophisticated image fusion network by Xu et al
[24]. This method uses artificial and profound restrictions to boost
memory. Saliency and plenty are used to sustain subjective and intuitive
qualities in the superficial limitation. The exclusive channels of a
pre-trained encoder objectively describe distinguishing information in
the deep-level constraint. A multiscale adaptive transformer (MATR)
was used for fusion of medical images in unsupervised manner [25].
Instead of regular convolution, adaptive convolution modulates the
convolutional layer on the basis of global complementary context. The
global semantic extraction was enhanced through an adaptive Trans-
former, modelling long-range dependencies better. We use a multiscale
network design to capture multimodal data at various sizes. Fu et al [26]
present a fusion algorithm to fuse medial images. This network com-
prises fuser, feature extractor along with reconstructor. The feature
extractor extracts multiscale features using three MSRPAN blocks. The
reconstructor uses three convolutional layers to reconstruct fused fea-
tures. It also provides the energy ration method for feature fusion. Goyal
et al [27] use pixel-based fusion rules to fuse multimodal medical images
using cross bilateral and edge-aware filtering. This method calculated
final fusion rule weights in a novel way. Both source images are first
filtered with a cross bilateral filter (CBF) that considers geometric
proximity and neighbouring pixel grey levels. This method prevents
edge smoothing by determining the kernel and filtering with one image
and vice versa. Subtracting output of CBF from input images yields the
detail images. The domain filter extracts smaller scale information from
detailed images near large-scale features. A novel image fusion method
to solve input image noise and poor contrast [28]. This enhancement
algorithm uses CLAHE, BM3D, and the Chameleon Swarm algorithm. An
adaptive parameter from the proposed image enhancement approach is
utilised for decomposition of image into three augmented layers.
Zhang et al [29] proposes an end-to-end unsupervised learning
fusion framework to address these problems. The MMIF implements
feature-weighted directed learning for extracting complimentary infor-
mation from the original images. The feature extraction framework
evaluates feature differences at several levels, allowing the feature
reconstruction framework for generating interactive weights and
directly determine the fusion result. DFENet, a medical image fusion
framework by Li et al [30] is a self-supervised blends CNN with vision
transformer feature learning. The DFENet’s encoder-decoder architec-
ture allows it to train on large natural image datasets without special
ground truth fusion images. This network has a feature fuser, encoder as
well as decoder. The CNN as well as transformer modules helps for
extraction of local and global image information in the encoder. The
novel global semantic information aggregation module effectively
combines the multiscale characteristics of transformer module by
improving image quality and eliminating the need for up-sampling and
concatenation. By combining a synthetic focus degree criterion and a
specific kernel set, Lepcha et al [31] proposes an image fusion algorithm
that performs well in noisy or low-contrast input images. Salient feature
extraction initiates with a gaussian curvature filter (GCF) further
improve image quality. The dual branch complementary feature injec-
tion fusion is proposed by Xie et al [32] using unsupervised CNN models
and transformer methods. This method feeds the entire and segmented
source images into an adaptive backbone network for capturing local
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and global characteristics. As an auxiliary module, the method generates
a multi-scale complementary feature extraction framework that em-
phasizes feature differences at each level for capturing apparent com-
plementary details in source photographs. Song et al [33] present a
medical imaging deep learning network model that merges Transformer
architecture with an upgraded DenseNet module to overcome the above
concerns. The method can be used on natural images. Transformer and
dense concatenation reduce feature loss, improving feature extraction
and reducing edge blurring.

This study presents a multiscale and pyramid-based approach to
produce perceptually better fusion performance based on deep neural
network (DNN) with morphological processing of residuals. In partic-
ular, each input image is split into Laplacian pyramid and the weight
maps constructed from the neural network is split into Gaussian pyramid
after morphological processing of residuals. The fusion process is taking
place at each decomposition level. Besides, we employ a fusion process
on the basis of local similarity for determining the fusion mode for the
decomposed coefficients. A weighted-average fusion mode is used when
there is a maximum level of similarity between the elements of the input
images for preservation of important information. In this case, the
weight maps are obtained from the neural network since they are more
dependable than a measure based on coefficients. In contrast, a choose-
max rule is implemented when there is little image content similarity
because it retains the most prominent details from the original images.
In this scenario, the outputs of neural network are less dependable, and
the absolute values of the decomposed coefficients are utilised to mea-
sure pixel activity directly. The network is used to fuse medical images
by expanding on these concepts. It is noteworthy that two fundamental
methods are utilised in fusion of images i.e., a similarity-based fusion
mode determination and the pyramid-based decomposition. In addition,
an edge-preserving processing technique is incorporated which selects
regions where edges should be retained by combining non-linear tech-
niques with linear lowpass filtering. Based on the morphological pro-
cessing of liner filter residuals, these regions are selected with the
intention of finding important regions with edges that have the right size
and high amplitude. Reconstruction operators and area opening are two
morphological image processing techniques used to achieve in our
method. In order to restore the edges original shape and the identified
regions are combined with the results of lowpass filter. In addition, this
method permits control over the contrast of they produced image, with
four customizable factors influencing the processing result.

The reminder of the paper is organised as follows: In Section 2, we
provide a systematic illustration of the proposed fusion method. Section
3 illustrate materials related to datasets, comparative methods, and
evaluation measures. In Section 4, an experimental result is presented
both visually and quantitatively along with detailed discussion. The
final section illustrates the conclusion of the proposed study.

2. Proposed methodology

The network utilised in the proposed fusion approach is shown in
Fig. 1. The branches of neural network are inhibited to having the same
weights [34]. The convolutional layers as well as max poling layer are
composed in each branch. In this network, we eliminate a fully con-
nected layer from the network to construct a much smaller structure
with the goal of reducing memory usage and improving computational
efficiency. After concatenation, the 512 feature maps are directly con-
nected with the two-dimensional vector. In single accuracy, the smaller
mode utilises very less physical memory, which is significantly less than
the model used in [34]. In the end, a two-way SoftMax layer receives this
two-dimensional vector as source which then generates a probability
distribution over two modules. These two modules, first patch 1 and
second patch 0, correspondingly first 0 and second patch 1 which rep-
resents for two different kinds of normalised weight assessment results.
Each probability modules indicates how likely it is that each weight will
be assigned. Since the total of the two output probabilities in this case is
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1, a possibility of individual module characterizes the weight allocated
to each input patch. As described in [34], the network is trained using
higher quality image patches and the corresponding blurred fluctua-
tions. Based on the study, the spatial, dimension of the input patch are
setto 16 x 16 during training phase. Random sampling and multiscale
gaussian filtering are used in the formation of training. The SoftMax loss
function is used as an optimisation goal, which can be reduce utilising
the stochastic gradient descent method.

The widely used deep learning structure Caffe is utilised for the
training process [35]. Refer [34] for information on network training for
the proposed study for proper illustrations. Meanwhile the network in-
cludes a fully connected layers whose dimensions are static for both
source and the output data since the source of the network needs to have
the static size in order to guarantee the source data for the fully con-
nected layers never changes. In case of image fusion, the source image
with different sizes can be accommodated by image segmentation into
overlapped patches and feeding each pair of patches into the network;
however, this procedure significantly increases the number of redundant
computations. In order to tackle this issue, the proposed method initially
convert fully connected layers into the corresponding conv layer that
consists of 8 x 8 x 512 kernel [36]. After conversion, the source images
of any size can be processed by the network collectively for generation of
dense prediction map. Furthermore, each prediction map which is a
two-dimensional vector incorporates the relative clarity details of the
source patch pairs at the correlative location. Since that each forecast
consists of two dimensions that have been adjusted to a sum of one, the
output can reduce to initial weight and the subsequent source. In the
end, we allocate the value as the weights for every pixel inside the patch
position and computed a mean of the overlapping pixels to produce a
weight map that resembles the dimensions of the original images. Fig. 1
demonstrates the schematic representation of proposed fusion algo-
rithm. The algorithm could be described in four stages.

2.1. DNN based weight map generation

Insert two input images A and B into the corresponding neural
network branches [37]. Detailed process is described in above section
for weight map generation W.

2.2. Morphological processed residuals

This section provides a procedure of the morphological processing of
residuals [38,39]. It is related to residual of the gaussian filter:

I=WxZ (€D)]

where W stands for a weight map from neural network, * for a con-
volutional function, and L denotes mask of the gaussian filter (or any
other lowpass filter). Besides, the residual of the liner filtering is defined
as follows:

Res(W) =W —1I @)

Operators defined on weight map with positive values are applied to
the residual in order to do further processing. As a result, the Res (W),
which contains both positive and negative values which can be divided
into two parts: positive and negative values.

Les: = 0.5(Res(W) + |[Res(W)|)

e, = 0.5(Res(W) — [Res(W))) ®

The following apparent relationship is satisfied by the proportion of
the residual:
RES(W) = lresy + Lres— (4)

Both fractions of the residual (Iyes., Ires—) are processed based on the
residual’s amplitude in order to remove negligible fluctuations while
keeping significant ones. The process relies on the morphological
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function M that maintains the original structures of the residuum while
selecting important regions based on the reconstruction. In order to
retain relevant borders and blurriness in irrelevant areas, the weight
map is finally updated to include large residual regions.

Lo =1 +vl/(1res+) 17( res— ) (5)
For both residuals, the operator M is specified as
A (I) =Ry (min(I, st(I)‘{min{I}, max (1);)) ©

by substituting two specified values for the original binary values of 1 s
and 0 s, and Ry (A) refers to morphological restoration of the grey level
mask I from the marker A. Finally, for two weight maps, 'min’ stands for
the pointwise minimal function. Besides, S denotes a mask including
significant components, and the concept of M is primarily concerned
with contrast preservation (Eq. (6)). A residual amplitude serves as the
basis of the substitute of the regions:

S = (I =1 )

where S is a selection function that extracts I segments whose amplitude
is greater than the specified threshold t. An illustration of image filtering
using the previously discussed method was presented in [38]. The test
images are filtered using different t values, and the results are shown.
Furthermore, a mask is defined as follows: grey denotes regions where
both masks equal zero, while white indicates the positive mask S (Ies())
and black denotes the negative mask S;(I,.s—)). By raising the threshold,
fewer components are detected and subsequently restored and used to
get the original image data. Ultimately, the quantity of parts displaying
their initial clarity is reconstructed. The first function of this method is a
mask that is created through thresholding and defines the limits of
pertinent elements. A measure of meaningfulness is the amplitude of
residuals. The importance of a section of a weight map is defined by
more than just amplitude, though. A component of an image with a
larger residual amplitude that is unimportant for visual comprehension
can be readily imagined. A source image that contains salt and pepper,
for example, produces a number of small, high-amplitude image ele-
ments, which alters the undesirable details by addition of high ampli-
tude elements. It will be recognized as important but unpleasant places
as a result. A further step has been added to our plan to address the
previously noted problems. To filter the mask, an area opening filter
[40] is utilised. This filter removes all related elements in the image that
are less than a given threshold size (i.e. size coefficient). Theus, the
expansion of Eq. (7) is described as follows:

Ss()= (I = t) 0 (s) @®)

The area opening which eliminates coefficients smaller than the size
represented indicated by s is recognized by the notation o(s). The impact
of utilising the size coefficients s and t is illustrated in [38]. It is clear that
the number of selected regions reduces as the factors s and t increases.
As aresult, it allows objects with a small number of pixels to be rejected
from the residual even if their amplitude is large. In the end, it makes it
easier to maintain these regions in a hazy form in the final weight maps.
Addition of (or removal, relies on filter mask coefficients) highpass
filtering from the image itself is a conventional process to enhance visual
contrasts. This relates to the high pass filtering characteristic that makes
it easier to identify local differences in the image pixel values. Alter-
native technique to obtain high pass filtering outputs is to distinguish

R{W}Y(u,v)
S{FY(u,v) =
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between lowpass filter and the image itself. The morphological pro-
cessing of residuals concerns high frequency components of images
which include areas with amplitudes higher than threshold ¢t. Eq. (5) is
changed by adding the contrast control coefficient (c) to regulate
contrast of the final fused result, which defines in the following formula:

M (Les-)) . )

Depending on the value of c, the contrast is either preserved (c = 1);
enhanced (¢ > 1) or decreased (0 < ¢ < 1). Examples indicating how the
contrast control coefficient (c) influences the processing results is pre-
sented in [38]. Besides, contrast enhancement results are shown without
the processing of morphological residuals. The influence of morpho-
logical processing on the amount of subtle image details visible in the
output is clear in [38]. This processing technique makes it easier to
ignore less important information by improving the contrast of relevant
weight map regions in images.

Wour =1+ (//( res+)

2.3. Laplacian and gaussian pyramid decomposition

All the source images are decomposing into a Laplacian pyramid
[41]. The pyramids of source images A and B are represented by S{A}l

and S{B}l7 where [ is the Ith-decomposition level. After morphological
processing the residuals of the weight map W, the weight map is further

decomposing into a Gaussian pyramid R{W}'. For each pyramid, the
overall decomposition level is set at the maximum probable values |
log,min(H, W)| in which HxW is the spatial dimensions of the source
image and |.-| indicates the flooring function.

2.4. Fusion of coefficients

Alocal energy map (i.e. the sum of the squares of coefficients inside a

small window) [42] of S{A}l and S{B}l, respectively is computed for
each decomposition level [ [37].

ZZS{A} u+p, v+q)>,
E:}:ﬂB}u+p,v+®

K, (u,v)
10)

The similarity measure utilised to identify the fusion mode is
computed as

2 3, ,S{AY (u+p, v+q) S{BY(u+p.v+4q).

zZ =
w7) K, (,) + K (u,v)

an

This measure has a range of [—1, 1], where values nearer 1 indicate
greater similarity. To decide which fusion mode should be used, a
threshold t is set. A weighted average fusion mode using weight map W
is used if Z!(u,v) > t.

S{FY (u,v) = R{WY(wv) . S{AY (@ v) + (1 -R{W}' (1)) . S{B}'(u,v)

12)

Eq. (10), which compares the local energy, is utilized to determine
the fusion mode if Z!(u,v) <

S{AY (wv), if Kj(u,v) > Ky(wv)
S{BY (wv), if Ky(wv) < Kj(uv)

The Eq. (14) summarizes the fusion strategy in its entirety. The final
fusion result is obtained using Laplacian pyramid reconstruction S{F}".

S{FY (wv) = { as)

LAY @) + (1 -R{WY(w,v)) . S{B}Y(u,v), if Z(u,v) > ¢
S{AY (u,v), if Z\(u,v) < t and if K, (u,v) > Ki(u,v) a4

S{BY(u,v), if Z\(u,v) < t and if K} (u,v) < Kl(u,v)
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The adoption of Laplacian and Gaussian pyramid decomposition for
multi-scale representation as well as the use of local energy and simi-
larity measures for coefficient analysis are adapted from prior image
fusion research. These elements are well-recognized in the literature and
have been shown to effectively capture structural details and assess sa-
liency. The novelty of the present work lies in three key aspects. First, we
introduce morphological processing of residuals derived from the DNN-
generated weight map which allows selective preservation of clinically
relevant edges while suppressing noise, with an additional tunable
contrast control mechanism for enhancing visibility. Second, we propose
a hybrid adaptive fusion rule that dynamically switches between
similarity-based weighted fusion and coefficient-based choose-max
fusion, thereby integrating the advantages of learned features with
robust model-driven decisions. Third, we implement the conversion of
fully connected layers to convolutional layers in the training network,
enabling efficient generation of dense per-pixel weight maps and
avoiding redundant patch-wise processing. Together, these innovations
distinguish our approach from conventional pyramid-based or
morphology-based fusion methods and constitute the principal contri-
butions of this study.

Algorithm: Medical Image Fusion (DNN + Morphological Residuals)
Input: Two source images A, B
Output: Fused image F

1. Weight Map Generation:

W = Net.forward(A, B) # DNN produces dense weights
2. Morphological Residual Processing:

I = conv (W, Gaussian)

Res =W -1

Respos, Respeg = split (Res)

Mpes = MorphReconstruct (Respos, tamp, Sarea)

Mpeg = MorphReconstruct (ReSneg, tamp, Sarea)

Wies = I+ ¢ * (Mpos — Myeg) # contrast control
3. Pyramid Decomposition:

Sa= LaplacianPyramid(A)

Sp= LaplacianPyramid(B)

Ry = GaussianPyramid (W)
4, Adaptive Fusion (per level 1):

Compute local energy K4, Kp and similarity Z

If Z > t5im:

Sp (11 = Rw [11* Sa [1] + A —Rw [1D) * S [1]

Else:

Sr [1] = max (Sa [11, Sp [1]) by local energy
5. Reconstruction:

F = LaplacianReconstruct (Sr)

Return F

3. Materials and data analysis

We used three different types of image dataset pairs (CT-MRI, MRI-
SPECT and MRI-PET) to scientifically validate the proposed methodol-
ogy. Every image is taken from the medical imaging resource The Whole
Brain Atlas [43]. Every image is 256 x 256 in size. For each dataset type,
we chose 60 image pairings for training and 25 pairs are utilised for
testing, i.e. the proposed neural network is trained using 60 pairs of
CT-MRI data pairs while using CT-MRI dataset for experiments. We
examined 25 data pairs for every type of dataset after training. Nine
standard mainstream approaches were used for enhancing the compar-
ison such as enhanced medical image fusion network (EMFusion) [24],
discrete stationary wavelet transform and the enhanced radial basis
function neural network (DSWT-RBFNN) [23], multiscale adaptive
transformer (MATR) [25], feature difference guided network (FDGNet)
[29], and dual branch feature enhanced network (DFENet) [30],
semantic-preserving fusion (SMFusion) [44], progressive parallel strat-
egy based on deep learning (PPMF-Net) [45], a mamba-based dual--
phase model (Mambadfuse) [46]. To improve scientific validation, we
assessed each algorithm using five standard quantitative image fusion
assessment metrics: Tsallis entropy (TN) [47] that computes the
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information incorporated in fusion image; mutual information (MI) [4],
computes information shared across a fused image and the input images;
QAB/F [4], which measures edge similarity based on gradient congru-
ency; spatial frequency (SF) [5], which computes the level of details and
textures in the fused image; and the edge preservation index (EPI) [5]. A
higher value for each of the above-mentioned criteria denotes a superior
fusion performance.

4. Results and discussions

The fused images were generated for every pair of datasets that were
considered for fusion as shown in Fig. (2). Figs. (3-9) show the fusion
performances of seven dataset pairs using nine different methods. Fig. 3
(c-k) denotes the fusion results generated from the EMFusion, DSWT-
RBFNN, MATR, FDGNet, DFENet, Mambadfuse, PPMF-Net SMFusion,
and Proposed, respectively. Fig. 3 (a-b) represents two original images
considered for fusion. We started by observing at the CT-MRI dataset
where Figs. (3-5) show the fusion results of CT-MRI (Dataset 1-3). The
CT and MRI (Dataset 1) incorporate of bronchogenic carcinoma. Fig. 3
(c—d) shows the poor fusion effects from the EMFusion and DSWT-
RBFNN methods and the brightness of images are greatly distorted as
well as the CT contour details are not adequately merged into the fusion
performance and the details of soft tissue and bone are not easily
noticeable especially with regard to the lesion. The overall fusion
outcome remained reasonable even though A MATR-based approach
enhanced the information quality representation when comparison to
images generated through other two approaches. The features of the
lesion are distinctively not visible in MATR method (see Fig. 3(e)).
However, as shown in Fig. 3 (f-k), the fusion results of the six methods (i.
e. FDGNet, DFENet, Mambadfuse, PPMF-Net, SMFusion and Proposed
methods are noticeably better. Significant improvements in structural
fidelity and image distortion prevention are made while maintaining the
integrity of

A space-occupying sarcoma’s pathological changes are represented
in the CT-MRI Dataset (2-3). The MRI images represent the edge of the
tumour in greater information, whereas the CT images represent the
general form of the tumour (see Fig. 4-5). Therefore, it is vital to fuse
both the images to accomplished greater detailed images. The proposed
algorithm successfully integrates the benefits of CT-MRI images (shown
in blue and green circles in Fig. 4 and 5(k) by producing fusion results
that are expressively superior than comparative methods. These fused
images are illustrious by enhanced image contrast and a complementary
broad representation of the edges of the tumour structure. As shown in
Figs. (6-7), the fusion results from MRI - SPECT (Dataset 1-2) represents
how well the integration of soft tissue and metabolic activity occurs. The
intrinsic features and rich feature information of the images are not well
represented by the MATR and DFENet based algorithms. In particular,
the energy information shows increasing distortion compared to the
original SPECT images (Figs. 6 and 7 (c-d)). However, the outputs of the
original images generated by the other four algorithms (Mambadfuse,
PPMF-Net, SMFusion, and the proposed) presents superior in case of
maintaining the energy detail of SPECT images. Besides, when compared
of these four approaches, the fusion efficiency of our algorithm clearly
outperforms the others by producing sensitive details that are clearer
and more comprehensive information features (Red circles in Figs. 9 and
10 (e-i) specify the performance of specific details). Figs. (8-9) display
the fused images from the MRI-PET Dataset (1-2). Subcortical blood
vessel changes are better explained by MRI. A better depiction of
metabolism is offered by Positron Emission Tomography (PET). The
properties of PECT images are not adequately presented in Figs. 8 and 9
(c-d), which were derived from the MATR and DFENet approaches.
There is less contrast as a result of the overall visual brightness being
lowered. The fusion consequences are therefore less than ideal. The
fusion results of Figs. 8 and 9(h) attained from the proposed algorithm
are higher (as shown by red circles) regardless of the energy restoration
of the functional images as well as the soft tissues, blood arteries, and
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(a3) CT-MRI (Dataset3)

(c1) MRI-PET (Dataset1) (c2) MRI-PET (Dataset2)

Fig. 2. Experimental pair of source images: (a) CT-MRI; (b) MRI-SPECT and (c) MRI-PET.

Fig. 3. Fusion performance of CT-MRI Dataset 1 based on nine algorithms: (a) CT; (b) MRI; (c) EMFusion; (d) DSWT-RBFNN; (e) MATR; (f) FDGNet; (g) DFENet; (h)
Mambadfuse; (i) PPMF-Net; (j) SMFusion and (k) Proposed, respectively.
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Fig. 4. Fusion performance of CT-MRI Dataset 2 based on nine algorithms: (a) CT; (b) MRI; (c) EMFusion; (d) DSWT-RBFNN; (e) MATR; (f) FDGNet; (g) DFENet; (h)

Mambadfuse; (i) PPMF-Net; (j) SMFusion and (k) Proposed, respectively.

(k)

Fig. 5. Fusion performance of CT-MRI Dataset 3 based on nine algorithms: (a) CT; (b) MRI; (c) EMFusion; (d) DSWT-RBFNN; (e) MATR; (f) FDGNet; (g) DFENet; (h)

Mambadfuse; (i) PPMF-Net; (j) SMFusion and (k) Proposed, respectively.

other information represented in the MRI images.

The evaluation metrics EPI, MI, SF, TE, and QAB/F were and MRI-
PET test data pairs. The mean fusion performance of five metrics
across all datasets is shown in Tables (1-3). The objective comprehen-
sive performances obtained from the Mambadfuse, PPMF-Net, SMFusion

methods demonstrated good results in terms of visual appraisal, border
fusion effect evaluation, and detailed information evaluation. The pro-
posed algorithm outperformed other methods in nearly all of the five
metrics such as SF, TE, and QAB/F across all datasets according to a
comparison of their performances. The proposed approach also presents
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(®) ()

Fig. 6. Fusion performance of MRI-SPECT Dataset 1 based on six algorithms: (a) MRI; (b) SPECT; (c) MATR; (d) DFENet; (e) Mambadfuset; (f) PPMF-Net (g)
SMFusion and (h) Proposed, respectively.

(® ()

Fig. 7. Fusion performance of MRI and SPECT Dataset 2 based on six algorithms: (a) MRI; (b) SPECT; (c) MATR; (d) DFENet; (e) Mambadfuset; (f) PPMF-Net (g)
SMFusion and (h) Proposed, respectively.
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Fig. 8. Fusion performance of MRI-PET Dataset 1 based on six algorithms: (a)
MRI; (b) PET; (c) MATR; (d) DFENet; (e) Mambadfuset; (f) PPMF-Net (g)
SMFusion and (h) Proposed, respectively.

(®

(h)

Fig. 9. Fusion performance of MRI and PET Dataset 2 based on six algorithms:
(a) MRI; (b) PET; (c) MATR; (d) DFENet; (e) Mambadfuset; (f) PPMF-Net (g)
SMFusion and (h) Proposed, respectively.

outstanding performance for EPI and MI for all datasets. The effective-
ness of our approach was marginally better to that of PPMF-Net and
SMFusion -based methods in all datasets. Subsequently, from a general
performance standpoint, the proposed strategy demonstrated superior
results in objective analysis which indicates exceptional robustness in
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fused images. Fig. 10 (a-e) represent an experimental result of different
values of Threshold (t) on metrics EPI, MI, QAB/F, SF, TE for CT-MRI
images. One can see that when t = 0.05, t = 0.08, the performance is
the better in most scenarios as shown Fig. 10.

The fusion performances of the proposed approach are shown by the
final outcomes. The outcomes need to be confirmed by more research
that includes a thorough comparison of different imaging types and
decomposition levels. The benefits of the DNN-based method occur from
its rich deeper architecture and considerable training set. Thus, we
maintain the sufficient training data is the key reasons for the
improvement of the DNN-based approach. To make the comparison
more precise, we trained the DNN based method using the same number
of data points as the proposed method. By modifying the neural network
design to meet specific experimental needs and choosing an efficient
training strategy, we observed that the proposed method permitted the
model to exhibit intelligence and self-learning capabilities. The deter-
mination of the properties of the input networks is a vital stage in the
development of the network design. By combining the pixel and regional
block levels of medical image fusion, we were able to achieve a com-
plimentary effect by combining the specific pixel regions and pertinent
characteristic properties of the one input image with those of another
source image in the same locations. As well as the correlation across
pixels and neighbouring pixel values within the regions, the pixel value
and the regional energy indicate differences in the properties of pixel
characteristics. The selection of these properties from the many sub-
bands gathered by decomposition level is intended to enhance the po-
tentiality of the input layers of network to correctly recognises the signal
without causing self-confusion. We used several dimensions in a com-
parison analysis of 25 pairs of different set of datasets (CT-MRI, MRI-
SPECT, MRI-PET) to find the optimal regions. Figures (3-9) shows
how a dataset performs visually across different categories. In addition,
Tables (1-3) analysed the quantitative performance of the different
measures assessed across 25 data pairs shows that our approach pro-
duces superior and optimal fusion results. The proposed approach is able
to achieved better performance in comparison to recent Mambadfuse,
PPMF-Net and SMFusion methods. Medical image fusion the process
utilised to complementarily fuse images composed from different med-
ical image technologies. By integrating anatomical as well as functional
information, the fusion result presents detailed information from
different singe mode imaging modalities without sacrificing any of the
energy and information from several images. In the domain of medical
image fusion, multiscale transform-based methods are progressively
gaining attraction. Also, the efficiency of the fusion procedure is directly
impacted by the generation of efficient fusion rules based on the sub-
bands of different coefficients. Despite the simplicity of the fusion
rules that are produced by these two approaches, the refinements and
features of the original images are not sufficiently recognized and
recovered which causes image distortion or degradation. Due to shift
variance, the EMFusion method is severely hampered which may result
in aliasing and information loss. However, the DSWT-RBFNN based al-
gorithms presented better fusion performance; however, the problem of
selecting the best parameters for algorithm activation still exists. There
is compromise regarding the utilisation of shift invariant multiscale
transforms that is based on processing at the pixel level. Nevertheless,
the problems with selection of the appropriate thresholds and parame-
ters or generating suitable fusion rules suffer. We developed fusion rules
in this study using neural networks and presented a hybrid approach.

In terms of computational efficiency, the proposed method is
designed to minimize overhead by converting the fully connected layers
of the network into convolutional layers, which allows dense prediction
without redundant patch-wise processing and thereby reduces memory
usage and accelerates inference. The additional morphological residual
processing step involves only lightweight morphological operators and
contributes negligible extra cost. As a result, the inference speed of the
proposed approach is competitive with or faster than recent trans-
former- and dictionary-based fusion methods, while moderately higher
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Fig. 10. Experimental performance on different values of Threshold (t) on (a) EPI, (b) QABF, (c) MJ, (d) SF, and (e) MRI-PET dataset.
than classical multiscale transforms due to the neural component.

Overall, the method achieves a favorable balance between computa-
tional cost and fusion performance, ensuring practicality for clinical use.

Table 1
Quantitative evaluation of CT-MRI fusion images.

m EPI MI QAB/F SF TE
5. Ablation study EMFusion 0.3562 1.4425 0.5672 26.8715 0.3828
DSWT-RBENN 0.3892 1.5626 0.6344 28.8162 0.4081
To better understand the contribution of the two core components of MATR 0.4252 1.6751 0.6726 32.8816 0.4312
the proposed framework such as morphological residual processing FDGNet 0.4362 1.7718 0.7125 31.8373 0.4971
DFENet 0.4692 1.8826 0.7552 33.0081 0.4816
(MRP) and the multi-scale pyramid (MSP) design while we carried out Mambadfuse 0.5352 1.9727 0.8077 34.8811 0.5244
an ablation study by selectively removing them from the pipeline and PPMF-Net 0.5072 1.9923 0.8252 36.8817 0.5517
observing the impact on fusion quality. When the morphological resid- SMFusion 0.4987 2.0028 0.8352 35.9817 0.5431
ual processing step was excluded, the fused results exhibited reduced Proposed 0.5862 2459 0.8445 87.8622 05775
sharpness in lesion boundaries and loss of subtle anatomical structures.
This that MRP plays a critical role in preserving edges, enhancing local
contrast, and suppressing irrelevant noise fluctuations. Its inclusion Table 2
ensures that diagnostically important regions, such as tumor margins Quantitative evaluation of MRI-SPECT fusion images.
and vascular details, remain well defined in the final fused images. In EPI MI Q/F SF TE
contrast, removing the multi-scale pyramid design led to a noticeable
D ¢ . . o . . MATR 0.4627 2.5381 0.7625 17.9928 0.2344
reduction in the richness of detail and information integration. Single- DFENet 0.5177 26715 0.7982 19.9172 0.2554
scale fusion was insufficient to capture both global structural informa- Mambadfuse 0.4926 3.0018 0.8026 21.4413 0.2617
tion and fine textural patterns, resulting in fused images with compro- PPMF-Net 0.5673 3.2891 0.8055 20.1872 0.2803
mised clarity and reduced perceptual quality. The MSP design thus SMFusion 0.5424 3.4324 0.8141 21.9272 0.2781
Proposed 0.5813 3.6772 0.8261 23.8229 0.2897

contributes to multi-resolution feature extraction, enabling effective
blending of coarse anatomical context with fine localized details.
Finally, combining both MRP and MSP provided the most balanced re-
sults, delivering fused images with high structural fidelity, strong edge Table 3

preservation, and comprehensive detail integration. This demonstrates Quantitative evaluation of MRI-PET fusion images.

that the two components are complementary and mutually reinforcing, EPI MI QMBI SF TE
and together they form the backbone of the robustness and clinical MATR 0.4625 1.9972 72,9937 24.0198 0.3927
relevance of the proposed method. DFENet 0.4972 21888 74.8838 25.8827 0.4366
A limitation of this study is the relatively small training set (60 pairs Mambadfuse 0.5193 2.3233 77.8272 27.1993 0.4628
per modality), which could restrict feature diversity and raise concerns PPMEF-Net 0.5623 2.5728 80.9727 28.1433 0.4902
SMFusion 0.5565 2.5552 81.8827 28.3837 0.5321

about generalization. To address this, we adopted patch-based training
with overlapping 16 x 16 patches and integrated morphological resid-
ual processing, reducing dependence on purely data-driven learning.

Proposed 0.5896 2.6954 83.8272 30.5286 0.5451
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These strategies, along with consistent improvements across CT-MRI,
MRI-SPECT, and MRI-PET datasets (Tables 1-3), indicate that the
model generalizes well despite limited data. Nonetheless, future work
will expand training using larger public datasets, apply augmentation
and transfer learning, and validate on multi-center clinical images to
further strengthen robustness and applicability.

6. Conclusion

This paper introduces a robust medical image fusion framework that
leverages a deep neural network in combination with morphological
processing of residuals. The core of the approach lies in the generation of
adaptive weight maps through a deep neural network, which effectively
captures and integrates pixel-level activity information from the source
images. To align the fusion process with human visual perception, image
pyramids are employed to achieve multiscale representation, ensuring
consistent integration of both fine and coarse details. The fusion mode is
further refined using a local similarity-based strategy that adaptively
adjusts for decomposed image components. A key element of the
methodology is the incorporation of edge-preserving processing,
designed to maintain critical structural boundaries. This is accomplished
by combining nonlinear algorithms with linear low-pass filtering to
identify and preserve regions with high amplitude and optimally scaled
edges. The morphologically processed residuals derived from linear
filter outputs serve as a reliable basis for selecting significant regions.
Morphological operations such as reconstruction and area opening are
employed to retain the original shape of edges, while blending the low-
pass filter results with the selected regions ensures accurate structural
preservation. Moreover, the method provides flexibility for contrast
adjustment in the fused image, enhancing its diagnostic utility.
Comprehensive experiments on diverse medical datasets demonstrate
that the proposed framework outperforms several state-of-the-art tech-
niques, delivering fused results with improved information richness,
structural fidelity, and preservation of fine details from the source
modalities.
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