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A B S T R A C T

Medical image fusion enhances the intrinsic statistical properties of original images by integrating comple
mentary information from multiple imaging modalities, producing a fused representation that supports more 
accurate diagnosis and effective treatment planning than individual images alone. The principal challenge lies in 
combining the most informative features without discarding critical clinical details. Although various methods 
have been explored, it remains difficult to consistently preserve structural and functional features across mo
dalities. To address this, we propose a deep neural network–based framework that incorporates morphologically 
processed residuals for competent fusion. The network is trained to directly map source images into weight maps 
thereby overcoming the limitations of traditional activity-level measurements and weight assignment algorithms, 
and enabling adaptive and reliable weighting of different modalities. The framework further employs image 
pyramids in a multi-scale design to align with human visual perception, and introduces a local similarity–based 
adaptive rule for decomposed coefficients to maintain consistency and fine detail preservation. An edge- 
preserving strategy combining linear low-pass filtering with nonlinear morphological operations is used to 
emphasize regions of high amplitude and preserve optimally sized structural boundaries. Residuals derived from 
the linear filter guide the morphological process ensuring significant regions are retained while reducing arti
facts. Experimental results demonstrate that the proposed method effectively integrates complementary infor
mation from multimodal medical images while mitigating noise, blocking effects, and distortions, leading to 
fused images with improved clarity and clinical value. This work provides an advanced and reliable fusion 
approach that contributes substantially to the field of medical image analysis, offering clinicians enhanced 
visualization tools for decision-making in diagnosis and treatment planning.

1. Introduction

Image fusion technology produces a well-informed single fused 
image which is highly informative due to combination of multiple 
source images. In addition to combining image data, this procedure also 
entails applying one or more algorithms to specifically process the 
resultant image [1–3]. In medical imaging, fusion is the procedure to 
combine two or multiple images from several imaging technologies to 
retain the benefit of complimentary information to generate a more 
complete image. Due to the emergence of medical imaging technology 
which includes MRI (magnetic resonance imaging), CT (computed to
mography), PET (positron emission tomography), SPECT (single photon 
emission computed tomography) and several other imaging modalities 

are widely used in clinical applications and treatment planning. There 
are many kinds of medical information available from each imaging 
method. As a useful reference for lesion localization, CT images for 
instance provide great spatial resolution and good bone imaging. 
However, soft tissue and fine details of invasive tumours are harder for 
CT to show. On the other hand, MRI is excellent at soft-tissue imaging 
which makes it perfect for figuring out how immense a lesion. While 
their lesser spatial resolution may restrict the ability to diagnose tu
mours, PET and SPECT can offer useful information about the body’s 
metabolic activities. Depending on a single image type frequently does 
not yield the best visualization since each imaging modality has inherent 
limitations resulting from different imaging principles. Medical image 
fusion can therefore produce more accurate and comprehensive images 
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by integrating the complementary information and strengths of several 
imaging modalities, greatly assisting in diagnosis and treatment plan
ning [4,5].

Recent decades have seen a rise in interest in medical image fusion 
research, especially in the domain of multiscale transform-based 
methods. To summarize, the foremost sequential procedures of multi
scale transform-based fusion techniques comprise source image 
decomposition into several coefficients, each of which uses sophisticated 
operators to encapsulate distinct feature information. In addition, 
different pixel-level fusion criteria are utilized to combine the matching 
components and inverse transform is carried out for generating a final 
fusion result. The initial conventional methods were those that depends 
on wavelet transforms [6] and Laplacian pyramid transforms [7]. 
Existing methods acquired diverse image feature information via mul
tiscale transformation, as various frequency components were preserved 
using identical or simplistic fusion algorithms during the amalgamation 
of sub-bands. However, a constraint of these approaches is that they 
analyse only a single image attribute, ignoring others which might 
significantly reduce the fusion effect [8]. To address this issue, several 
advanced methods were presented. Tian et al [9] used pixel or regional 
data to build fusion rules across frequency bands. The fractional wavelet 
transform approach by Xu et al [10] improves fusion coefficient 
description. Likewise, Lie et al. presented a sparse representation theory 
based on minimum spanning trees (MST) [11]. The above-mentioned 
systems use diverse rules across several frequency bands to get 
adequate results; however, their rules prevent them from fully inte
grating detail and contour information. Artifact difficulties are often 
inevitable due to down sampling and up sampling. To reduce the Gibbs 
phenomenon, stationary wavelet transform (SWT) image fusion ap
proaches were presented [12], however poor rules hindered fusion of 
images. Additionally, a shift invariant approaches that include 
non-subsampled contourlet transform (NSCT) have gained attention. In 
terms of NSCT approach, Ganasala et al [13] used Laplacian operators 
and entropy on low and high coefficients. The NSCT based algorithms 
integrate low and high frequency coefficients via phase congruency, 
focused contrast, or Laplacian energy restrictions [14]. A popular 
shift-invariant image decomposition and reconstruction approach is 
such as nonsubsampled shearlet transform (NSST) uses a shear wave 
filter. According to Liu et al [15], the gradient factor improves coeffi
cient optimization using the structure tensor and NSST. Singh et al [16] 
formed a cascaded model using ripplet transform and NSST to enhance 
direction information. The above methods reveal directional tissue 
features accurately and comprehensively. The huge difference in 
parameter efficiency among filters affects the stability of the fusion 
performance based on parameter selection [17]. This method use pulse 
coupled neural network (PCNN) which represents a simple subtle 
vision-based neural network. The global domain PCNN-based approach 
to image fusion can preserve complex features. However, activating 
neurons to increase efficiency short of training remains difficult.

Huang et al [18] stimulate each PCNN neuron with the image block’s 
Laplacian energy. An adaptive PCNN method are used in high coefficient 
region of NSST for increasing PCNN efficiency and fusion quality [19]. 
Even though there are several PCNN-related fusion approaches, the 
optimisation of coefficient and threshold characterization are still being 
explored. Recently, convolutional neural network (CNN) related models 
are used to solve fusion of medical images problems [20]. The shortages 
of small sampling data as well as a difficulty for construction of deep 
neural networks have hampered their consistency. The multiscale 
domain recommends that CNN sampling or convolution can easily cause 
fusion phase information loss. Also, a fusion method on the basis of fuzzy 
radial basis operator neural network is introduced [21], which only 
activated input neurons using image domain pixel features, which may 
have limited neural network cognitive capacity and performance. 
Medical image fusion research emphases on shift-invariant multiscale 
transformations to create frequency sub-band-specific fusion rules. 
However, selecting the best fusion rules is difficult. An advanced 

SR-SCNN blending approach for image fusion [22] contains three pha
ses. After entering complete source images into standard orthogonal 
matching pursuit, the super-resolution fusion result is generated utilis
ing the max rule to enhance pixel localisation. Besides, each source 
image receives a special SCNN-based K-SVD dictionary learning 
approach. A technique improves image information extraction and 
fusion result sparsity due to its non-linear behaviour. Chao et al [23] 
develops a novel fusion approach utilising the DSWT and RBFNN. The 
method first use 2-level decomposition to split two images into seven 
segments with low- and high frequency sub-bands for DSWT processing. 
We used the upgraded RBFNN to replace incomplete parts in the same 
areas of the two images, taking into account the target’s gradient and 
energy. An unsupervised sophisticated image fusion network by Xu et al 
[24]. This method uses artificial and profound restrictions to boost 
memory. Saliency and plenty are used to sustain subjective and intuitive 
qualities in the superficial limitation. The exclusive channels of a 
pre-trained encoder objectively describe distinguishing information in 
the deep-level constraint. A multiscale adaptive transformer (MATR) 
was used for fusion of medical images in unsupervised manner [25]. 
Instead of regular convolution, adaptive convolution modulates the 
convolutional layer on the basis of global complementary context. The 
global semantic extraction was enhanced through an adaptive Trans
former, modelling long-range dependencies better. We use a multiscale 
network design to capture multimodal data at various sizes. Fu et al [26] 
present a fusion algorithm to fuse medial images. This network com
prises fuser, feature extractor along with reconstructor. The feature 
extractor extracts multiscale features using three MSRPAN blocks. The 
reconstructor uses three convolutional layers to reconstruct fused fea
tures. It also provides the energy ration method for feature fusion. Goyal 
et al [27] use pixel-based fusion rules to fuse multimodal medical images 
using cross bilateral and edge-aware filtering. This method calculated 
final fusion rule weights in a novel way. Both source images are first 
filtered with a cross bilateral filter (CBF) that considers geometric 
proximity and neighbouring pixel grey levels. This method prevents 
edge smoothing by determining the kernel and filtering with one image 
and vice versa. Subtracting output of CBF from input images yields the 
detail images. The domain filter extracts smaller scale information from 
detailed images near large-scale features. A novel image fusion method 
to solve input image noise and poor contrast [28]. This enhancement 
algorithm uses CLAHE, BM3D, and the Chameleon Swarm algorithm. An 
adaptive parameter from the proposed image enhancement approach is 
utilised for decomposition of image into three augmented layers.

Zhang et al [29] proposes an end-to-end unsupervised learning 
fusion framework to address these problems. The MMIF implements 
feature-weighted directed learning for extracting complimentary infor
mation from the original images. The feature extraction framework 
evaluates feature differences at several levels, allowing the feature 
reconstruction framework for generating interactive weights and 
directly determine the fusion result. DFENet, a medical image fusion 
framework by Li et al [30] is a self-supervised blends CNN with vision 
transformer feature learning. The DFENet’s encoder-decoder architec
ture allows it to train on large natural image datasets without special 
ground truth fusion images. This network has a feature fuser, encoder as 
well as decoder. The CNN as well as transformer modules helps for 
extraction of local and global image information in the encoder. The 
novel global semantic information aggregation module effectively 
combines the multiscale characteristics of transformer module by 
improving image quality and eliminating the need for up-sampling and 
concatenation. By combining a synthetic focus degree criterion and a 
specific kernel set, Lepcha et al [31] proposes an image fusion algorithm 
that performs well in noisy or low-contrast input images. Salient feature 
extraction initiates with a gaussian curvature filter (GCF) further 
improve image quality. The dual branch complementary feature injec
tion fusion is proposed by Xie et al [32] using unsupervised CNN models 
and transformer methods. This method feeds the entire and segmented 
source images into an adaptive backbone network for capturing local 
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and global characteristics. As an auxiliary module, the method generates 
a multi-scale complementary feature extraction framework that em
phasizes feature differences at each level for capturing apparent com
plementary details in source photographs. Song et al [33] present a 
medical imaging deep learning network model that merges Transformer 
architecture with an upgraded DenseNet module to overcome the above 
concerns. The method can be used on natural images. Transformer and 
dense concatenation reduce feature loss, improving feature extraction 
and reducing edge blurring.

This study presents a multiscale and pyramid-based approach to 
produce perceptually better fusion performance based on deep neural 
network (DNN) with morphological processing of residuals. In partic
ular, each input image is split into Laplacian pyramid and the weight 
maps constructed from the neural network is split into Gaussian pyramid 
after morphological processing of residuals. The fusion process is taking 
place at each decomposition level. Besides, we employ a fusion process 
on the basis of local similarity for determining the fusion mode for the 
decomposed coefficients. A weighted-average fusion mode is used when 
there is a maximum level of similarity between the elements of the input 
images for preservation of important information. In this case, the 
weight maps are obtained from the neural network since they are more 
dependable than a measure based on coefficients. In contrast, a choose- 
max rule is implemented when there is little image content similarity 
because it retains the most prominent details from the original images. 
In this scenario, the outputs of neural network are less dependable, and 
the absolute values of the decomposed coefficients are utilised to mea
sure pixel activity directly. The network is used to fuse medical images 
by expanding on these concepts. It is noteworthy that two fundamental 
methods are utilised in fusion of images i.e., a similarity-based fusion 
mode determination and the pyramid-based decomposition. In addition, 
an edge-preserving processing technique is incorporated which selects 
regions where edges should be retained by combining non-linear tech
niques with linear lowpass filtering. Based on the morphological pro
cessing of liner filter residuals, these regions are selected with the 
intention of finding important regions with edges that have the right size 
and high amplitude. Reconstruction operators and area opening are two 
morphological image processing techniques used to achieve in our 
method. In order to restore the edges original shape and the identified 
regions are combined with the results of lowpass filter. In addition, this 
method permits control over the contrast of they produced image, with 
four customizable factors influencing the processing result.

The reminder of the paper is organised as follows: In Section 2, we 
provide a systematic illustration of the proposed fusion method. Section 
3 illustrate materials related to datasets, comparative methods, and 
evaluation measures. In Section 4, an experimental result is presented 
both visually and quantitatively along with detailed discussion. The 
final section illustrates the conclusion of the proposed study.

2. Proposed methodology

The network utilised in the proposed fusion approach is shown in 
Fig. 1. The branches of neural network are inhibited to having the same 
weights [34]. The convolutional layers as well as max poling layer are 
composed in each branch. In this network, we eliminate a fully con
nected layer from the network to construct a much smaller structure 
with the goal of reducing memory usage and improving computational 
efficiency. After concatenation, the 512 feature maps are directly con
nected with the two-dimensional vector. In single accuracy, the smaller 
mode utilises very less physical memory, which is significantly less than 
the model used in [34]. In the end, a two-way SoftMax layer receives this 
two-dimensional vector as source which then generates a probability 
distribution over two modules. These two modules, first patch 1 and 
second patch 0, correspondingly first 0 and second patch 1 which rep
resents for two different kinds of normalised weight assessment results. 
Each probability modules indicates how likely it is that each weight will 
be assigned. Since the total of the two output probabilities in this case is 

1, a possibility of individual module characterizes the weight allocated 
to each input patch. As described in [34], the network is trained using 
higher quality image patches and the corresponding blurred fluctua
tions. Based on the study, the spatial, dimension of the input patch are 
set to 16 × 16 during training phase. Random sampling and multiscale 
gaussian filtering are used in the formation of training. The SoftMax loss 
function is used as an optimisation goal, which can be reduce utilising 
the stochastic gradient descent method.

The widely used deep learning structure Caffe is utilised for the 
training process [35]. Refer [34] for information on network training for 
the proposed study for proper illustrations. Meanwhile the network in
cludes a fully connected layers whose dimensions are static for both 
source and the output data since the source of the network needs to have 
the static size in order to guarantee the source data for the fully con
nected layers never changes. In case of image fusion, the source image 
with different sizes can be accommodated by image segmentation into 
overlapped patches and feeding each pair of patches into the network; 
however, this procedure significantly increases the number of redundant 
computations. In order to tackle this issue, the proposed method initially 
convert fully connected layers into the corresponding conv layer that 
consists of 8 × 8 × 512 kernel [36]. After conversion, the source images 
of any size can be processed by the network collectively for generation of 
dense prediction map. Furthermore, each prediction map which is a 
two-dimensional vector incorporates the relative clarity details of the 
source patch pairs at the correlative location. Since that each forecast 
consists of two dimensions that have been adjusted to a sum of one, the 
output can reduce to initial weight and the subsequent source. In the 
end, we allocate the value as the weights for every pixel inside the patch 
position and computed a mean of the overlapping pixels to produce a 
weight map that resembles the dimensions of the original images. Fig. 1
demonstrates the schematic representation of proposed fusion algo
rithm. The algorithm could be described in four stages.

2.1. DNN based weight map generation

Insert two input images A and B into the corresponding neural 
network branches [37]. Detailed process is described in above section 
for weight map generation W.

2.2. Morphological processed residuals

This section provides a procedure of the morphological processing of 
residuals [38,39]. It is related to residual of the gaussian filter: 

I = W ∗ L (1) 

where W stands for a weight map from neural network, * for a con
volutional function, and L denotes mask of the gaussian filter (or any 
other lowpass filter). Besides, the residual of the liner filtering is defined 
as follows: 

Res(W) = W − I (2) 

Operators defined on weight map with positive values are applied to 
the residual in order to do further processing. As a result, the Res (W), 
which contains both positive and negative values which can be divided 
into two parts: positive and negative values. 

Ires+ = 0.5(Res(W) + |Res(W)|)

Ires− = 0.5(Res(W) − |Res(W)|)
(3) 

The following apparent relationship is satisfied by the proportion of 
the residual: 

Res(W) = Ires+ + Ires− (4) 

Both fractions of the residual (Ires+, Ires− ) are processed based on the 
residual’s amplitude in order to remove negligible fluctuations while 
keeping significant ones. The process relies on the morphological 
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Fig. 1. Methodological flowchart of the proposed method.
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function M that maintains the original structures of the residuum while 
selecting important regions based on the reconstruction. In order to 
retain relevant borders and blurriness in irrelevant areas, the weight 
map is finally updated to include large residual regions. 

Iout = I + M (Ires+) − M (Ires− ) (5) 

For both residuals, the operator M is specified as 

M (I) = RI

(
min

(
I, St(I)|{min{I}, max {I}}

))
(6) 

where “|” indicates a mapping operator that generates grey level images 
by substituting two specified values for the original binary values of 1 s 
and 0 s, and RI (A) refers to morphological restoration of the grey level 
mask I from the marker A. Finally, for two weight maps, ’min’ stands for 
the pointwise minimal function. Besides, S denotes a mask including 
significant components, and the concept of M is primarily concerned 
with contrast preservation (Eq. (6)). A residual amplitude serves as the 
basis of the substitute of the regions: 

St(I) = (I ≥ t) (7) 

where S is a selection function that extracts I segments whose amplitude 
is greater than the specified threshold t. An illustration of image filtering 
using the previously discussed method was presented in [38]. The test 
images are filtered using different t values, and the results are shown. 
Furthermore, a mask is defined as follows: grey denotes regions where 
both masks equal zero, while white indicates the positive mask St(Ires(+))

and black denotes the negative mask St(Ires(− )). By raising the threshold, 
fewer components are detected and subsequently restored and used to 
get the original image data. Ultimately, the quantity of parts displaying 
their initial clarity is reconstructed. The first function of this method is a 
mask that is created through thresholding and defines the limits of 
pertinent elements. A measure of meaningfulness is the amplitude of 
residuals. The importance of a section of a weight map is defined by 
more than just amplitude, though. A component of an image with a 
larger residual amplitude that is unimportant for visual comprehension 
can be readily imagined. A source image that contains salt and pepper, 
for example, produces a number of small, high-amplitude image ele
ments, which alters the undesirable details by addition of high ampli
tude elements. It will be recognized as important but unpleasant places 
as a result. A further step has been added to our plan to address the 
previously noted problems. To filter the mask, an area opening filter 
[40] is utilised. This filter removes all related elements in the image that 
are less than a given threshold size (i.e. size coefficient). Theus, the 
expansion of Eq. (7) is described as follows: 

St,s(I) = (I ≥ t) o (s) (8) 

The area opening which eliminates coefficients smaller than the size 
represented indicated by s is recognized by the notation o(s). The impact 
of utilising the size coefficients s and t is illustrated in [38]. It is clear that 
the number of selected regions reduces as the factors s and t increases. 
As a result, it allows objects with a small number of pixels to be rejected 
from the residual even if their amplitude is large. In the end, it makes it 
easier to maintain these regions in a hazy form in the final weight maps. 
Addition of (or removal, relies on filter mask coefficients) highpass 
filtering from the image itself is a conventional process to enhance visual 
contrasts. This relates to the high pass filtering characteristic that makes 
it easier to identify local differences in the image pixel values. Alter
native technique to obtain high pass filtering outputs is to distinguish 

between lowpass filter and the image itself. The morphological pro
cessing of residuals concerns high frequency components of images 
which include areas with amplitudes higher than threshold t. Eq. (5) is 
changed by adding the contrast control coefficient (c) to regulate 
contrast of the final fused result, which defines in the following formula: 

Wout = I + (M (Ires+) − M (Ires− )).c. (9) 

Depending on the value of c, the contrast is either preserved (c = 1); 
enhanced (c > 1) or decreased (0 < c < 1). Examples indicating how the 
contrast control coefficient (c) influences the processing results is pre
sented in [38]. Besides, contrast enhancement results are shown without 
the processing of morphological residuals. The influence of morpho
logical processing on the amount of subtle image details visible in the 
output is clear in [38]. This processing technique makes it easier to 
ignore less important information by improving the contrast of relevant 
weight map regions in images.

2.3. Laplacian and gaussian pyramid decomposition

All the source images are decomposing into a Laplacian pyramid 
[41]. The pyramids of source images A and B are represented by S{A}l 

and S{B}l
, where l is the lth-decomposition level. After morphological 

processing the residuals of the weight map W, the weight map is further 
decomposing into a Gaussian pyramid R{W}

l. For each pyramid, the 
overall decomposition level is set at the maximum probable values ⌊ 
log2min(H,W)⌋ in which H×W is the spatial dimensions of the source 
image and ⌊.⋅⌋ indicates the flooring function.

2.4. Fusion of coefficients

A local energy map (i.e. the sum of the squares of coefficients inside a 
small window) [42] of S{A}l and S{B}l, respectively is computed for 
each decomposition level l [37]. 

Kl
A(u, v) =

∑

m

∑

n
S{A}l

(u + p, v + q)2
,

Kl
B(u, v) =

∑

m

∑

n
S{B}l

(u + p, v + q)2
,

(10) 

The similarity measure utilised to identify the fusion mode is 
computed as 

Zl(u, v) =
2
∑

p
∑

qS{A}l
(u + p, v + q) S{B}l

(u + p, v + q),
Kl

A(u, v) + Kl
B(u, v)

(11) 

This measure has a range of [− 1, 1], where values nearer 1 indicate 
greater similarity. To decide which fusion mode should be used, a 
threshold t is set. A weighted average fusion mode using weight map W 
is used if Zl(u,v) ≥ t.

S{F}l
(u, v) = R{W}

l
(u, v) . S{A}l

(u, v) +
(
1 − R{W}

l
(u, v)

)
. S{B}l

(u, v)
(12) 

Eq. (10), which compares the local energy, is utilized to determine 
the fusion mode if Zl(u,v) < t: 

S{F}l
(u, v) =

{
S{A}l

(u, v), if Kl
A(u, v) ≥ Kl

B(u, v)
S{B}l

(u, v), if Kl
A(u, v) < Kl

B(u, v)
(13) 

The Eq. (14) summarizes the fusion strategy in its entirety. The final 
fusion result is obtained using Laplacian pyramid reconstruction S{F}l. 

S{F}l
(u, v) =

⎧
⎪⎪⎨

⎪⎪⎩

R{W}
l
(u, v) . L{A}l

(u, v) +
(
1 − R{W}

l
(u, v)

)
. S{B}l

(u, v), if Zl(u, v) ≥ t

S{A}l
(u, v), if Zl(u, v) < t and if Kl

A(u, v) ≥ Kl
B(u, v)

S{B}l
(u, v), if Zl(u, v) < t and if Kl

A(u, v) < Kl
B(u, v)

(14) 
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The adoption of Laplacian and Gaussian pyramid decomposition for 
multi-scale representation as well as the use of local energy and simi
larity measures for coefficient analysis are adapted from prior image 
fusion research. These elements are well-recognized in the literature and 
have been shown to effectively capture structural details and assess sa
liency. The novelty of the present work lies in three key aspects. First, we 
introduce morphological processing of residuals derived from the DNN- 
generated weight map which allows selective preservation of clinically 
relevant edges while suppressing noise, with an additional tunable 
contrast control mechanism for enhancing visibility. Second, we propose 
a hybrid adaptive fusion rule that dynamically switches between 
similarity-based weighted fusion and coefficient-based choose-max 
fusion, thereby integrating the advantages of learned features with 
robust model-driven decisions. Third, we implement the conversion of 
fully connected layers to convolutional layers in the training network, 
enabling efficient generation of dense per-pixel weight maps and 
avoiding redundant patch-wise processing. Together, these innovations 
distinguish our approach from conventional pyramid-based or 
morphology-based fusion methods and constitute the principal contri
butions of this study.

Algorithm: Medical Image Fusion (DNN ± Morphological Residuals)
Input: Two source images A, B 

Output: Fused image F
1. Weight Map Generation:
​ W = Net.forward(A, B) # DNN produces dense weights
2. Morphological Residual Processing:
​ I = conv (W, Gaussian)
​ Res = W − I
​ Respos, Resneg = split (Res)
​ Mpos = MorphReconstruct (Respos, tamp, Sarea)
​ Mneg = MorphReconstruct (Resneg, tamp, Sarea)
​ Wref = I + c * (Mpos − Mneg) # contrast control
3. Pyramid Decomposition:
​ SA= LaplacianPyramid(A)
​ SB= LaplacianPyramid(B)
​ RW = GaussianPyramid (Wref )
4. Adaptive Fusion (per level l):
​ Compute local energy KA, KB and similarity Z
​ If Z ≥ τsim:
​ SF [l] = RW [l]* SA [l] + (1− RW [l]) * SB [l]
​ Else:
​ SF [l] = max (SA [l], SB [l]) by local energy
5. Reconstruction:
​ F = LaplacianReconstruct (SF)
​ Return F

3. Materials and data analysis

We used three different types of image dataset pairs (CT-MRI, MRI- 
SPECT and MRI-PET) to scientifically validate the proposed methodol
ogy. Every image is taken from the medical imaging resource The Whole 
Brain Atlas [43]. Every image is 256 × 256 in size. For each dataset type, 
we chose 60 image pairings for training and 25 pairs are utilised for 
testing, i.e. the proposed neural network is trained using 60 pairs of 
CT-MRI data pairs while using CT-MRI dataset for experiments. We 
examined 25 data pairs for every type of dataset after training. Nine 
standard mainstream approaches were used for enhancing the compar
ison such as enhanced medical image fusion network (EMFusion) [24], 
discrete stationary wavelet transform and the enhanced radial basis 
function neural network (DSWT-RBFNN) [23], multiscale adaptive 
transformer (MATR) [25], feature difference guided network (FDGNet) 
[29], and dual branch feature enhanced network (DFENet) [30], 
semantic-preserving fusion (SMFusion) [44], progressive parallel strat
egy based on deep learning (PPMF-Net) [45], a mamba-based dual-
phase model (Mambadfuse) [46]. To improve scientific validation, we 
assessed each algorithm using five standard quantitative image fusion 
assessment metrics: Tsallis entropy (TN) [47] that computes the 

information incorporated in fusion image; mutual information (MI) [4], 
computes information shared across a fused image and the input images; 
QAB/F [4], which measures edge similarity based on gradient congru
ency; spatial frequency (SF) [5], which computes the level of details and 
textures in the fused image; and the edge preservation index (EPI) [5]. A 
higher value for each of the above-mentioned criteria denotes a superior 
fusion performance.

4. Results and discussions

The fused images were generated for every pair of datasets that were 
considered for fusion as shown in Fig. (2). Figs. (3–9) show the fusion 
performances of seven dataset pairs using nine different methods. Fig. 3
(c-k) denotes the fusion results generated from the EMFusion, DSWT- 
RBFNN, MATR, FDGNet, DFENet, Mambadfuse, PPMF-Net SMFusion, 
and Proposed, respectively. Fig. 3 (a-b) represents two original images 
considered for fusion. We started by observing at the CT-MRI dataset 
where Figs. (3–5) show the fusion results of CT-MRI (Dataset 1–3). The 
CT and MRI (Dataset 1) incorporate of bronchogenic carcinoma. Fig. 3
(c–d) shows the poor fusion effects from the EMFusion and DSWT- 
RBFNN methods and the brightness of images are greatly distorted as 
well as the CT contour details are not adequately merged into the fusion 
performance and the details of soft tissue and bone are not easily 
noticeable especially with regard to the lesion. The overall fusion 
outcome remained reasonable even though A MATR-based approach 
enhanced the information quality representation when comparison to 
images generated through other two approaches. The features of the 
lesion are distinctively not visible in MATR method (see Fig. 3(e)). 
However, as shown in Fig. 3 (f-k), the fusion results of the six methods (i. 
e. FDGNet, DFENet, Mambadfuse, PPMF-Net, SMFusion and Proposed 
methods are noticeably better. Significant improvements in structural 
fidelity and image distortion prevention are made while maintaining the 
integrity of

A space-occupying sarcoma’s pathological changes are represented 
in the CT-MRI Dataset (2–3). The MRI images represent the edge of the 
tumour in greater information, whereas the CT images represent the 
general form of the tumour (see Fig. 4–5). Therefore, it is vital to fuse 
both the images to accomplished greater detailed images. The proposed 
algorithm successfully integrates the benefits of CT-MRI images (shown 
in blue and green circles in Fig. 4 and 5(k) by producing fusion results 
that are expressively superior than comparative methods. These fused 
images are illustrious by enhanced image contrast and a complementary 
broad representation of the edges of the tumour structure. As shown in 
Figs. (6–7), the fusion results from MRI – SPECT (Dataset 1–2) represents 
how well the integration of soft tissue and metabolic activity occurs. The 
intrinsic features and rich feature information of the images are not well 
represented by the MATR and DFENet based algorithms. In particular, 
the energy information shows increasing distortion compared to the 
original SPECT images (Figs. 6 and 7 (c–d)). However, the outputs of the 
original images generated by the other four algorithms (Mambadfuse, 
PPMF-Net, SMFusion, and the proposed) presents superior in case of 
maintaining the energy detail of SPECT images. Besides, when compared 
of these four approaches, the fusion efficiency of our algorithm clearly 
outperforms the others by producing sensitive details that are clearer 
and more comprehensive information features (Red circles in Figs. 9 and 
10 (e-i) specify the performance of specific details). Figs. (8–9) display 
the fused images from the MRI-PET Dataset (1–2). Subcortical blood 
vessel changes are better explained by MRI. A better depiction of 
metabolism is offered by Positron Emission Tomography (PET). The 
properties of PECT images are not adequately presented in Figs. 8 and 9
(c–d), which were derived from the MATR and DFENet approaches. 
There is less contrast as a result of the overall visual brightness being 
lowered. The fusion consequences are therefore less than ideal. The 
fusion results of Figs. 8 and 9(h) attained from the proposed algorithm 
are higher (as shown by red circles) regardless of the energy restoration 
of the functional images as well as the soft tissues, blood arteries, and 
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Fig. 2. Experimental pair of source images: (a) CT-MRI; (b) MRI-SPECT and (c) MRI-PET.

Fig. 3. Fusion performance of CT-MRI Dataset 1 based on nine algorithms: (a) CT; (b) MRI; (c) EMFusion; (d) DSWT-RBFNN; (e) MATR; (f) FDGNet; (g) DFENet; (h) 
Mambadfuse; (i) PPMF-Net; (j) SMFusion and (k) Proposed, respectively.
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other information represented in the MRI images.
The evaluation metrics EPI, MI, SF, TE, and QAB/F were and MRI- 

PET test data pairs. The mean fusion performance of five metrics 
across all datasets is shown in Tables (1–3). The objective comprehen
sive performances obtained from the Mambadfuse, PPMF-Net, SMFusion 

methods demonstrated good results in terms of visual appraisal, border 
fusion effect evaluation, and detailed information evaluation. The pro
posed algorithm outperformed other methods in nearly all of the five 
metrics such as SF, TE, and QAB/F across all datasets according to a 
comparison of their performances. The proposed approach also presents 

Fig. 4. Fusion performance of CT-MRI Dataset 2 based on nine algorithms: (a) CT; (b) MRI; (c) EMFusion; (d) DSWT-RBFNN; (e) MATR; (f) FDGNet; (g) DFENet; (h) 
Mambadfuse; (i) PPMF-Net; (j) SMFusion and (k) Proposed, respectively.

Fig. 5. Fusion performance of CT-MRI Dataset 3 based on nine algorithms: (a) CT; (b) MRI; (c) EMFusion; (d) DSWT-RBFNN; (e) MATR; (f) FDGNet; (g) DFENet; (h) 
Mambadfuse; (i) PPMF-Net; (j) SMFusion and (k) Proposed, respectively.
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Fig. 6. Fusion performance of MRI-SPECT Dataset 1 based on six algorithms: (a) MRI; (b) SPECT; (c) MATR; (d) DFENet; (e) Mambadfuset; (f) PPMF-Net (g) 
SMFusion and (h) Proposed, respectively.

Fig. 7. Fusion performance of MRI and SPECT Dataset 2 based on six algorithms: (a) MRI; (b) SPECT; (c) MATR; (d) DFENet; (e) Mambadfuset; (f) PPMF-Net (g) 
SMFusion and (h) Proposed, respectively.
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outstanding performance for EPI and MI for all datasets. The effective
ness of our approach was marginally better to that of PPMF-Net and 
SMFusion -based methods in all datasets. Subsequently, from a general 
performance standpoint, the proposed strategy demonstrated superior 
results in objective analysis which indicates exceptional robustness in 

fused images. Fig. 10 (a-e) represent an experimental result of different 
values of Threshold (t) on metrics EPI, MI, QAB/F, SF, TE for CT-MRI 
images. One can see that when t = 0.05, t = 0.08, the performance is 
the better in most scenarios as shown Fig. 10.

The fusion performances of the proposed approach are shown by the 
final outcomes. The outcomes need to be confirmed by more research 
that includes a thorough comparison of different imaging types and 
decomposition levels. The benefits of the DNN-based method occur from 
its rich deeper architecture and considerable training set. Thus, we 
maintain the sufficient training data is the key reasons for the 
improvement of the DNN-based approach. To make the comparison 
more precise, we trained the DNN based method using the same number 
of data points as the proposed method. By modifying the neural network 
design to meet specific experimental needs and choosing an efficient 
training strategy, we observed that the proposed method permitted the 
model to exhibit intelligence and self-learning capabilities. The deter
mination of the properties of the input networks is a vital stage in the 
development of the network design. By combining the pixel and regional 
block levels of medical image fusion, we were able to achieve a com
plimentary effect by combining the specific pixel regions and pertinent 
characteristic properties of the one input image with those of another 
source image in the same locations. As well as the correlation across 
pixels and neighbouring pixel values within the regions, the pixel value 
and the regional energy indicate differences in the properties of pixel 
characteristics. The selection of these properties from the many sub- 
bands gathered by decomposition level is intended to enhance the po
tentiality of the input layers of network to correctly recognises the signal 
without causing self-confusion. We used several dimensions in a com
parison analysis of 25 pairs of different set of datasets (CT-MRI, MRI- 
SPECT, MRI-PET) to find the optimal regions. Figures (3–9) shows 
how a dataset performs visually across different categories. In addition, 
Tables (1–3) analysed the quantitative performance of the different 
measures assessed across 25 data pairs shows that our approach pro
duces superior and optimal fusion results. The proposed approach is able 
to achieved better performance in comparison to recent Mambadfuse, 
PPMF-Net and SMFusion methods. Medical image fusion the process 
utilised to complementarily fuse images composed from different med
ical image technologies. By integrating anatomical as well as functional 
information, the fusion result presents detailed information from 
different singe mode imaging modalities without sacrificing any of the 
energy and information from several images. In the domain of medical 
image fusion, multiscale transform-based methods are progressively 
gaining attraction. Also, the efficiency of the fusion procedure is directly 
impacted by the generation of efficient fusion rules based on the sub- 
bands of different coefficients. Despite the simplicity of the fusion 
rules that are produced by these two approaches, the refinements and 
features of the original images are not sufficiently recognized and 
recovered which causes image distortion or degradation. Due to shift 
variance, the EMFusion method is severely hampered which may result 
in aliasing and information loss. However, the DSWT-RBFNN based al
gorithms presented better fusion performance; however, the problem of 
selecting the best parameters for algorithm activation still exists. There 
is compromise regarding the utilisation of shift invariant multiscale 
transforms that is based on processing at the pixel level. Nevertheless, 
the problems with selection of the appropriate thresholds and parame
ters or generating suitable fusion rules suffer. We developed fusion rules 
in this study using neural networks and presented a hybrid approach.

In terms of computational efficiency, the proposed method is 
designed to minimize overhead by converting the fully connected layers 
of the network into convolutional layers, which allows dense prediction 
without redundant patch-wise processing and thereby reduces memory 
usage and accelerates inference. The additional morphological residual 
processing step involves only lightweight morphological operators and 
contributes negligible extra cost. As a result, the inference speed of the 
proposed approach is competitive with or faster than recent trans
former- and dictionary-based fusion methods, while moderately higher 

Fig. 8. Fusion performance of MRI-PET Dataset 1 based on six algorithms: (a) 
MRI; (b) PET; (c) MATR; (d) DFENet; (e) Mambadfuset; (f) PPMF-Net (g) 
SMFusion and (h) Proposed, respectively.

Fig. 9. Fusion performance of MRI and PET Dataset 2 based on six algorithms: 
(a) MRI; (b) PET; (c) MATR; (d) DFENet; (e) Mambadfuset; (f) PPMF-Net (g) 
SMFusion and (h) Proposed, respectively.

S. Kaur et al.                                                                                                                                                                                                                                    BenchCouncil Transactions on Benchmarks, Standards and Evaluations 5 (2025) 100237 

10 



than classical multiscale transforms due to the neural component. 
Overall, the method achieves a favorable balance between computa
tional cost and fusion performance, ensuring practicality for clinical use.

5. Ablation study

To better understand the contribution of the two core components of 
the proposed framework such as morphological residual processing 
(MRP) and the multi-scale pyramid (MSP) design while we carried out 
an ablation study by selectively removing them from the pipeline and 
observing the impact on fusion quality. When the morphological resid
ual processing step was excluded, the fused results exhibited reduced 
sharpness in lesion boundaries and loss of subtle anatomical structures. 
This that MRP plays a critical role in preserving edges, enhancing local 
contrast, and suppressing irrelevant noise fluctuations. Its inclusion 
ensures that diagnostically important regions, such as tumor margins 
and vascular details, remain well defined in the final fused images. In 
contrast, removing the multi-scale pyramid design led to a noticeable 
reduction in the richness of detail and information integration. Single- 
scale fusion was insufficient to capture both global structural informa
tion and fine textural patterns, resulting in fused images with compro
mised clarity and reduced perceptual quality. The MSP design thus 
contributes to multi-resolution feature extraction, enabling effective 
blending of coarse anatomical context with fine localized details. 
Finally, combining both MRP and MSP provided the most balanced re
sults, delivering fused images with high structural fidelity, strong edge 
preservation, and comprehensive detail integration. This demonstrates 
that the two components are complementary and mutually reinforcing, 
and together they form the backbone of the robustness and clinical 
relevance of the proposed method.

A limitation of this study is the relatively small training set (60 pairs 
per modality), which could restrict feature diversity and raise concerns 
about generalization. To address this, we adopted patch-based training 
with overlapping 16 × 16 patches and integrated morphological resid
ual processing, reducing dependence on purely data-driven learning. 

Fig. 10. Experimental performance on different values of Threshold (t) on (a) EPI, (b) QABF, (c) MI, (d) SF, and (e) MRI-PET dataset.

Table 1 
Quantitative evaluation of CT-MRI fusion images.

m EPI MI QAB/F SF TE

EMFusion 0.3562 1.4425 0.5672 26.8715 0.3828
DSWT-RBFNN 0.3892 1.5626 0.6344 28.8162 0.4081
MATR 0.4252 1.6751 0.6726 32.8816 0.4312
FDGNet 0.4362 1.7718 0.7125 31.8373 0.4971
DFENet 0.4692 1.8826 0.7552 33.0081 0.4816
Mambadfuse 0.5352 1.9727 0.8077 34.8811 0.5244
PPMF-Net 0.5072 1.9923 0.8252 36.8817 0.5517
SMFusion 0.4987 2.0028 0.8352 35.9817 0.5431
Proposed 0.5862 2.4596 0.8445 37.8622 0.5775

Table 2 
Quantitative evaluation of MRI-SPECT fusion images.

EPI MI QAB/F SF TE

MATR 0.4627 2.5381 0.7625 17.9928 0.2344
DFENet 0.5177 2.6715 0.7982 19.9172 0.2554
Mambadfuse 0.4926 3.0018 0.8026 21.4413 0.2617
PPMF-Net 0.5673 3.2891 0.8055 20.1872 0.2803
SMFusion 0.5424 3.4324 0.8141 21.9272 0.2781
Proposed 0.5813 3.6772 0.8261 23.8229 0.2897

Table 3 
Quantitative evaluation of MRI-PET fusion images.

EPI MI QAB/F SF TE

MATR 0.4625 1.9972 72.9937 24.9198 0.3927
DFENet 0.4972 2.1888 74.8838 25.8827 0.4366
Mambadfuse 0.5193 2.3233 77.8272 27.1993 0.4628
PPMF-Net 0.5623 2.5728 80.9727 28.1433 0.4902
SMFusion 0.5565 2.5552 81.8827 28.3837 0.5321
Proposed 0.5896 2.6954 83.8272 30.5286 0.5451
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These strategies, along with consistent improvements across CT-MRI, 
MRI-SPECT, and MRI-PET datasets (Tables 1–3), indicate that the 
model generalizes well despite limited data. Nonetheless, future work 
will expand training using larger public datasets, apply augmentation 
and transfer learning, and validate on multi-center clinical images to 
further strengthen robustness and applicability.

6. Conclusion

This paper introduces a robust medical image fusion framework that 
leverages a deep neural network in combination with morphological 
processing of residuals. The core of the approach lies in the generation of 
adaptive weight maps through a deep neural network, which effectively 
captures and integrates pixel-level activity information from the source 
images. To align the fusion process with human visual perception, image 
pyramids are employed to achieve multiscale representation, ensuring 
consistent integration of both fine and coarse details. The fusion mode is 
further refined using a local similarity–based strategy that adaptively 
adjusts for decomposed image components. A key element of the 
methodology is the incorporation of edge-preserving processing, 
designed to maintain critical structural boundaries. This is accomplished 
by combining nonlinear algorithms with linear low-pass filtering to 
identify and preserve regions with high amplitude and optimally scaled 
edges. The morphologically processed residuals derived from linear 
filter outputs serve as a reliable basis for selecting significant regions. 
Morphological operations such as reconstruction and area opening are 
employed to retain the original shape of edges, while blending the low- 
pass filter results with the selected regions ensures accurate structural 
preservation. Moreover, the method provides flexibility for contrast 
adjustment in the fused image, enhancing its diagnostic utility. 
Comprehensive experiments on diverse medical datasets demonstrate 
that the proposed framework outperforms several state-of-the-art tech
niques, delivering fused results with improved information richness, 
structural fidelity, and preservation of fine details from the source 
modalities.
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